
Implicit and Explicit Typing in Lambda Logic

Michael Beeson1?

San José State University, San José, Calif.
beeson@cs.sjsu.edu,

www.cs.sjsu.edu/faculty/beeson

Abstract. Otter-lambda is a theorem-prover based on an untyped logic
with lambda calculus, called lambda logic. Otter-lambda is built on Ot-
ter, so it uses resolution proof search, supplemented by demodulation and
paramodulation for equality reasoning, but it also uses a new algorithm,
lambda unification, to instantiate variables for functions or predicates.
The idea of “implicit typing” is to “type” the function and predicate sym-
bols by specifying the legal types of their arguments and return values.
The hope is that if the axioms can be typed in this way then the con-
sequences should be typeable too. This is true (with one restriction) in
first-order logic. We show that by placing suitable restrictions on lambda
unification, one can extend this theorem to lambda logic. All the inter-
esting proofs obtained so far with Otter-lambda, except those explicitly
involving untypeable axioms, are covered by this theorem. “Explicit typ-
ing” refers to the use of simple type-checking in addition to implicit
typing.

1 Introduction

Lambda logic is an untyped system, and lambda unification is an untyped unifi-
cation algorithm. Lambda logic is a consistent system with a completeness the-
orem [1], but the exact relationships between lambda logic and first order logic,
and between lambda logic and typed logics, have still not been worked out, and
some proofs in lambda logic seem at first glance surprisingly close to inconsis-
tency. On the other hand, Otter-λ, which use lambda logic, has proved many
interesting theorems whose proofs, by inspection, translate directly into first-
order proofs. We may especially mention proofs by mathematical induction [2],
where lambda unification is used to find the instance or instances of induction
required; the proofs produced translate directly into formal Peano arithmetic
PA, which has an infinite schema of first-order instances of induction, although
Otter-λ works with a single axiom of induction with a variable for the predicate.
We are interested in the following question: Suppose we have some axioms and
a conjecture formulated in some typed logic. Suppose we erase the type labels,
obtaining axioms and a conjecture in lambda logic, and run Otter-λ (or any
other prover) and find a proof in lambda logic, using the usual first-order in-
ference rules with lambda unification. Can we translate that proof back into a
? Research supported by NSF grant number CCR-0204362.

II

proof in the original logic? This is a delicate question: Otter-λ can produce some
untypeable proofs, and it can also produce good, typeable proofs, in some cases
from axioms which, when considered as untyped, are inconsistent.

This question already arises in first-order logic, without bringing in lambda
unification to complicate the matter. The simplest case of “types” (when there
are no “function types”) is more commonly called “sorts”. For example, we might
have one “sort” for the natural numbers and another “sort” for elements of some
ring. In that setting, consider the problem of proving that there are no nilpotent
elements in an integral domain. An integral domain is a ring R in which xy = 0
implies x = 0 or y = 0, i.e. there are no zero divisors. A element c of R is
called nilpotent if for some positive integer n, cn is zero. Informally, one proves
by induction on n that cn is not zero. The equation defining exponentiation is
xs(n) = x ∗ xn. If c and cn are both nonzero, then the integral domain axiom
implies that cn+1 is also nonzero.

If we prove this theorem in a two-sorted logic (specifying the particular in-
stance of induction to use, so that there is nothing “higher-order” about the
problem) and then erase the sorts, and input the problem to a first-order theo-
rem prover, and it finds a proof, do we know for certain in advance of inspecting
the proof that we will be able to put back the “sorts” and construct a proof
of the original theorem in two-sorted logic? This is a first-order example of the
situation that concerns us. The answer in the first-order case [4] is that we can
do it, as long as the first-order proof did not use paramodulation from or into
variables. The answer for lambda logic is not quite so straightforward, since there
do exist untypeable proofs in lambda logic. The “problem” is that in first-order
resolution, variables get assigned a value in unification only when the variable
occurs as an argument, either of a parent term or a parent literal, so there is only
one possible type for that variable, if function and predicate symbols have unique
types. But in lambda logic, that is not so, since we want to use a variable in a
predicate or function position. (That is also the problem with paramodulation
from variables: the type of a variable is not uniquely determined.)

The theorems in this paper start with a set of first-order clauses that could
be the result of “erasing types”: we assume that we have axioms and a conjecture
that are “implicitly” typed (or typeable). We begin by defining this notion pre-
cisely. After that, we need to analyze the lambda unification algorithm, and see
where mistyped terms might arise; or at least, under what general circumstances
they do not arise. This leads to the notion of type-safe lambda unification. We
then show that when we use type-safe lambda unification instead of ordinary
unification in the usual first-order rules of inference, the same results on implicit
typing that work for first-order logic continue to work for lambda logic.

What does this mean in practice? Suppose we start with an implicitly-
typeable input file, and run Otter-λ. Then we have three possible ways to know
that the proof is also typeable: (1) We could inspect the output proof and verify
(by hand or machine) that it is indeed typeable; or (2) We could put the com-
mand set(types) in the input file, telling Otter-λ to use certain restrictions
that guarantee only type-safe lambda unifications will be made, and appeal to

III

the theorems about implicit typing in this paper; or (3) we could put into the
input file some explicit typings for the function, predicate, and constant symbols,
under list(types). For example, type(N, s(N)) says that s takes integers to
integers; type(R, pow(R, N)) says that pow(x, n) has type R if x has type R and
n has type N . If list(types) is present, then Otter-λ respects these typings in
performing lambda unification; and again, by the theorems of this paper, any
proof that Otter-λ finds with list(types) present is guaranteed to be typeable.

2 Implicit typing in first order logic

We begin with the “no-nilpotents” example. To formalize this theorem in first
order logic we might use two unary predicates R(x) and N (x), whose meaning
would be “x is a member of the ring R” and “x is a natural number”, respectively.
Then the ring axioms would be “relativized to R”, which means that instead
of saying x + 0 = 0, we would say R(x) → x + 0 = 0, or in clausal form,
−R(x)|x + 0 = 0. (The vertical bar means “or”, and the minus sign means
“not”.) Similarly, the axiom of induction would be relativized to N . The axiom
of induction is usually formulated using a symbol s for the successor function, or
“next-integer” function. For example, s(4) = 5. The specific instance of induction
we need for this proof can be expressed by the two (unrelativized) clauses

xo 6= 0 | xg(x) = 0 | xn = 0.

x 6 = 0 | xs(g(x)) 6= 0 | xn = 0.

To see that this expresses induction, think of g(x) as a constant (on which x
is not allowed to depend). Then the middle literal of the first clause is xc = 0.
That is the induction hypothesis. The middle literal of the second clause is
xs(c) 6= 0. That is the negated conclusion of the induction step. We have used
o instead of 0 for the natural number zero, perhaps not the same as the ring
element 0.1 Now here is the question: when formalizing this problem, do we
need to relativize the axioms using R(x) and N (x), or not? Experimentally, if
we put the unrelativized axioms into Otter, we do find a proof. Certainly this
proof shows that in any integral domain whose underlying set is the natural
numbers, there are no nilpotents, since in that case all the variables range over
the same set, and no question of typing arises. But that is not the theorem
that we set out to prove, so it may appear that we must use R(x), N (x), and
relativization to formalize this problem. That is, however, not so. The method of
“implicit typing” shows that under certain circumstances we can dispense with
1 The relativized versions of the induction axioms would be

−R(x) | − N(n) | xo 6= 0 | xg(x,n) = 0 | xn = 0.

−R(x) | − N(n) | xo 6= 0 | xs(g(x,n)) 6= 0 | xn = 0.

−R(x) | − N(n) | N(g(n, x)).

IV

unary predicates such as R and N . Each argument position of each function or
predicate symbol is assigned a type and the symbol is also assigned a “value
type” or “return type”. For example, in this problem the ring operations +
and ∗ have the type of functions taking two R arguments and producing an R
value, which we might express as type(R, +(R, R)). If we use N for the sort of
natural numbers then we need to use a different symbol for addition on natural
numbers, say type(N, plus(N, N)), and we need to use a different symbol for 0
in the ring and zero in N . The Skolem symbol g in the induction axiom has
the type specification type(N, g(R)). The exponentiation function has the type
specification type(R, RN)). The value type of predicate symbols must be Prop.

Constants are considered as 0-ary function symbols, so they are assigned
types, for example type(R, 0) and type(N, o). We call a formula or term correctly
typed if it is built up consistently with these type assignments. Note that variables
are not typed; e.g. x+y is correctly typed no matter what variables x and y are.
Variables are not assigned types. Instead, when a variable occurs in a formula,
it inherits a type from the term in which it occurs, and if it occurs again in the
same clause, it must have the same type at the other occcurence for the clause
to be considered correctly typed. Once all the function symbols, constants, and
predicate symbols have been assigned types, one can check (manually) whether
the clauses supplied in an input file are correctly typed.

Then one observes that if the rules of inference preserve the typing, and if the
axioms are correctly typed, and the prover finds a proof, then every step of the
proof can be correctly typed. That means that it could be converted into a proof
that used unary predicates for the sorts. Hence, if it assists the proof-finding
process to omit these unary predicates, it is all right to do so. This technique
was introduced in [4].

Definition 1. A type specification is an expression of the form type(R, f(U, V)),
where R, U , and V are “type symbols”. Any first-order terms not containing vari-
ables may be used as type symbols. Here ‘type’ must occur literally, and f can
be any symbol. The number of arguments of f , here shown as two, can be any
number, including zero.

The type R is called the value type of f . The symbol f is called the symbol
of the type specification, and the number of arguments of f is the arity.

Definition 2. A typing of a term is an assignment of types to the variables
occurring in the term and to each subterm of the term. A typing of a literal is
similar, but the formula itself must get value type Prop. A typing of a clause is
an assignment that simultaneously types all the literals of the clause. A typing
of a term (or literal or clause or set of clauses) t is correct with respect to a list
of type specifications S provided that

(i) each occurrence of a variable in t is assigned the same type.
(ii) each subterm r of t is typed according to a type specification in S. That

is, if r is f(u, v) and f(u, v),u, and v are assigned types a, b, and c respectively,
then there is a type specification in S of the form type(a, f(b, c)).

(iii) each occurrence of each subterm r of t in t has the same value type.

V

In the definition, nothing prevents S from having more than one type specifi-
cation for the same function symbol and arity. Condition (iii) is needed in such a
case. The phrase, correctly typed term t, is short for “term t and a correct typing
of t with respect to some list of type specifications given by the context”. The
simplest theorem on implicit typing concerns (binary) resolution.2

Theorem 1. Suppose each function symbol and constant occurring in a theory
T is assigned a unique type specification, in such a way that all the axioms
of T are correctly typed (with respect to this list of type specifications). Then
conclusions reached from T by binary resolution (using first-order unification)
are also correctly typed.

Remark . This theorem is perhaps implicit in [4]. It is a special case of the theorem
for lambda logic proved below, so we do not present a separate proof.

Does this theorem apply to the no-nilpotents example? We have to be careful
about the type specification of the equality symbol. If we specify type(bool, =
(R, R)), then we cannot use the same equality symbol in the axioms for the
natural numbers, for example s(x) 6= 0 and x = y | s(x) 6= s(y). However, Otter
treats any symbol beginning with EQ as an equality; = is a synonym for EQ, but
one can also use, for example EQ2. Therefore, if we want to apply the theorem,
we need to use two different equality symbols.

The theorem above can be extended to include the additional rules of infer-
ence factoring, paramodulation, and demodulation. 3

Theorem 2. Suppose each function symbol and constant occurring in a theory
T is assigned a unique type specification, in such a way that all the axioms of
T are correctly typed (with respect to this list of type specifications). The type
specifications of equality symbols must have the form type(bool, = (X, X)) for
some type X. Then conclusions reached from T by binary resolution, hyperres-
olution, factoring, demodulation, and paramodulation (using first-order unifica-
tion in applying these rules) are also correctly typed, provided demodulation and
paramodulation are not applied to or from variables.

2 In the following theorem, we assume (as is customary with resolution) that after a
theory has been brought to clausal form, the variables in distinct clauses are renamed
so that no variable occurs in more than one clause.

3 For those not familiar with those rules we review their definitions. Factoring permits
the derivation of a new clause by unifying two literals in the same clause that have
the same sign, and applying the resulting substitution to the entire clause. Para-
modulation is the following: suppose we have already deduced t = q (or q = t) and
P [z := r], and unification of t and r produces a substitution σ such that tσ = rσ;
then we can deduce P [z := qσ]. Paramodulation from variables is the case in which
t is a variable. Paramodulation into a variable is the case in which r is a variable.
Demodulation is similar to paramodulation, except that (i) unlike paramodulation,
it is unidirectional (i.e., the hypothesis must be t = q, not q = t), (ii) it is applied
only under certain circumstances and using formulas designated in an input file as
“demodulators”. From the point of view of soundness proofs, it is a special case of
paramodulation.

VI

Proof. This is a special case of Theorem 4 below, which treats lambda logic.
Example. One cannot allow “overloading”, or multiple type specifications for

the same symbol, and still use implicit typing correctly. Suppose we want to use
x + y both for natural numbers and for integers. Thinking of integers, we write
the axiom x + (−x) = 0, and thinking of natural numbers we write 1 + x 6= 0.
Resolving these clauses, we find a contradiction upon taking x = 1.

Example. This example illuminates the situation with regard to paramodu-
lation from variables. Consider the three unit clauses x = a, P (b), and −P (c).
These clauses lead to a contradiction using paramodulation from the variable
x and binary resolution. But without paramodulation from variables, no con-
tradiction can be derived. This shows that we have lost first-order refutation
completeness, already in the first order case, as the price of implicit typing. But
this is good: if equality is between objects of type A and P is a predicate on ob-
jects of type B, then these clauses are not contradictory. This loss of first-order
completeness already occurs in the first-order case, and is not a phenomenon
special to lambda logic. Question: “but if b and c have the same type, then
shouldn’t the contradiction be found?” Answer: ‘b’ and ‘c’ are constants in an
untyped language, so they do not have types. What the example shows is that, if
many-sorted models are considered, there are models of this theory, even though
the theory has no first-order models.

3 Lambda logic and lambda unification

Lambda logic is the logical system one obtains by adding lambda calculus to first
order logic. This system is formulated, and some fundamental metatheorems are
proved, in [1]. The appropriate generalization of unification to lambda logic
is this notion: two terms are said to be lambda unified by substitution σ if
tσ = sσ is provable in lambda logic. An algorithm for producing lambda unifying
substitutions, called lambda unification, is used in the theorem prover Otter-λ,
which is based on lambda logic rather than first-order logic, but is built on
the well-known first-order prover Otter [3]. In Otter-λ, lambda unification is
used, instead of only first-order unification, in the inference rules of resolution,
factoring, paramodulation, and demodulation.

In Otter-λ input files, we write lambda(x, t) for λx. t, and we write Ap(x, y)
for x applied to y, which is often abbreviated in technical papers to x(y) or even
xy. In this paper, Ap and lambda will always be written explicitly.

Our main objective in this section is to define the lambda unification algo-
rithm. This is a non-deterministic algorithm: it can return, in general, many
different unifying substitutions for two given input terms. As for ordinary uni-
fication, the input is two terms t and s (this time terms of lambda logic) and
the output, if the algorithm succeeds, is a substitution σ such that tσ = sσ is
provable in lambda logic.

We first give the relatively simple clauses in the definition. These have to
do with first-order unification, alpha-conversion, and beta-reduction. The rule
related to first-order unification just says that we try that first; for example

VII

Ap(x, y) unifies with Ap(a, b) directly in a first-order way. However, the usual
recursive calls in first-order unification now become recursive calls to lambda
unification. In other words: to unify f(t1, . . . , tn with g(s1, . . . , sm), this clause
does not apply unless f = g and n = m; in that case we do the following:

for i = 1 to n {
τ = unify(ti, si); // recursive call
if (τ == failure) return failure;
σ = σ ◦ τ; }

return σ;
The rule related to alpha-conversion says that, if we want to unify lambda(z, t)
with lambda(x, s), let τ be the substitution z := x and then unify tτ with s,
rejecting any substitution that assigns a value depending on x.4 If this unification
succeeds with substitution σ, return σ.

The rule related to beta-reduction says that, to unify Ap(lambda(z, s), q)
with t, we first beta-reduce and then unify. That is, we unify s[z := q] with t
and return the result.

Lambda unification’s most interesting instructions tell how to unify Ap(x, w)
with a term t, where t may contain the variable x, and t does not have main
symbol Ap. Note that the occurs check of first-order unification does not apply
in this case. The term w, however, may not contain x. In this case lambda
unification is given by the following non-deterministic algorithm:

1. Pick a masking subterm q of t. That means a subterm q such that every
occurrence of x in t is contained in some occurrence of q in t. (So q “masks” the
occurrences of x; if there are no occurrences of x in t, then q can be any subterm
of t, but see the next step.)

2. Call lambda unification to unify w with q. Let σ be the resulting substitution.
If this unification fails, or assigns any value other than a variable to x, return
failure. If it assigns a variable to x, say x := y reverse the assignment to y := x
so that x remains unassigned.

3. If qσ occurs more than once in tσ, then pick a set S of its occurrences. If q
contains x then S must be the set of all occurrences of qσ in t. Let z be a fresh
variable and let r be the result of substituting z in tσ for each occurrence of qσ
in the set S.

4. Append the substitution x := λz. r to σ and return the result.

There are two sources of non-determinism in the above, namely steps 1 and 3.5

4 Care is called for in this clause, as illustrated by the following example: Unify
lambda(x, y) with lambda(x, f(x)). The “solution” y = f(x) is wrong, since substi-
tuting y = f(x) in lambda(x, y) gives lambda(z, f(x)), because the bound variable
is renamed to avoid capture.

5 Step 1 is made deterministic in Otter-λ as follows: in step 1, if x occurs in t, we
pick the largest masking subterm q that occurs as a second argument of Ap. The
point of this choice is that, if we want the proof to be implicitly typeable, then q
should be chosen to have the same type as w, and w is a second argument of Ap. If x
occurs in t, but no masking subterm occurs as a second argument of Ap, we pick the

VIII

Finally, lambda unification needs a rule for unifying Ap(r, w) with t, when r
is not a variable. The rule is this: create a fresh variable X, unify Ap(X, w) with
t generating substitution σ, then unify Xσ with rσ, generating substitution τ ;
if this succeeds return στ , or rather, the substitution that agrees with στ but is
not defined on X, since X does not occur in the original unification problem.

Example. Unify Ap(Ap(x, y), z) with 3. Choose fresh X, unify Ap(X, z) with
3, getting z := 3 and X = lambda(u, u). Now unify lambda(u, u) with Ap(x, y),
getting y := lambda(u, u) and x := lambda(v, v). So the final answer is x :=
lambda(v, v), y := lambda(u, u), z := 3. We can check that this really is a
correct lambda unifier as follows:

Ap(Ap(x, y), z) = Ap(Ap(lambda(u, u), lambda(v, v)), 3)
= Ap(lambda(v, v), 3)
= 3.

Example. Lambda unification can lead to untypeable proofs, for example
those needed to produce fixed points in lambda calculus. As an example, if we
unify Ap(x, y) with f(Ap(x, y)), the masking subterm q is x itself; w is y so σ is
y := x; wσ is x and tσ is Ap(x, x). Thus we get the following result:6

x := lambda(z, f(Ap(z, z))) y := x

Type restrictions will be violated if we have specified the typing:

type(B, Ap(i(A, B), A)). type(B, f(B)).

Variable x has type i(A, B), and variable y has type A, so the unification of x
and y violates type restrictions, since i(A, B) is not the same type as A.

Definition 3. We say that a particular lambda unification (of Ap(X, w) with
t) is type-safe (with respect to some explicit or implicit typings) if the masking
subterm q selected by lambda unification has the same type (with respect to those
typings) as the term w, and q is a proper subterm of t (unless the two argu-
ments of Ap have the same type). We also require that the value type assigned
to Ap(X, w) is the same as the value type assigned to t.

smallest masking subterm. If x does not occur in t, we pick a constant that occurs
in t; if there is none, we fail. In step 3, if q does not contain x, then an important
application of this choice is to proofs by mathematical induction, where the choice of
q corresponds to choosing a constant n, replacing some of the occurrences of n by a
variable, and deciding to prove the theorem by induction on that variable. Therefore
it is important to backtrack over multiple choices in this step. Early versions of Otter-
λ made a deterministic choice, but since December 2005, Otter-λ can backtrack
over different choices of S, returning up to a pre-specified number max unifiers of
different unifiers. Our proofs in this paper apply to the full non-deterministic lambda
unification, as well as to any versions obtained by restricting the choices of possible
masking terms.

6 The symbol i does not have to be “defined” here; type assignments can be arbitrary
terms. But intuitively, i(A,B) could be thought of as the type of functions from type
A to type B.

IX

The example preceding the definition illustrates a lambda unification that is not
type-safe for any reasonable typing. The masking subterm is x; type safety would
require x to be assigned the same type as y. But x occurs as a first argument
of Ap and y as a second argument of Ap. Therefore the type specification of Ap
would have to be of the form type(V, Ap(U, U)); but normally Ap will have a
type specification of the form type(B, Ap(i(A, B), A)).

4 Implicit typing in lambda logic

In lambda logic, we can state the axiom of mathematical induction in full gen-
erality, and Otter-λ can use lambda unification to find the specific instance of
induction that is required. The proof, many of which are exhibited in [2] are
correctly typeable. We will show that this is not an accident.

Definition 4. A list of type specifications S is called coherent if
(1) for each (predicate or function) symbol f (except possibly Ap and lambda)
and arity n, it contains at most one type specification of symbol f and arity n;
the value type of a predicate symbol must be Prop and of a function symbol, must
not be Prop.
(2) type(i(X, Y), lambda(X, Y)) belongs to S if and only if

type(Y, Ap(i(X, Y), X)) belongs to S.
(3) all type specifications with symbol Ap have the form type(V, Ap(i(U, V), U)),
for the same type U , which is called the “ground type” of S.
(4) all type specifications with symbol lambda have the form

type(i(U, V), lambda(U, V)),7 where U is the ground type of S.
(5) There are at most two type specifications in S with symbol Ap; if there are
two, then exactly one must have value type Prop.

Conditions (2) and (3) guarantee that beta-reduction carries correctly typed
terms to correctly typed terms. One might wish for a less restrictive condition in
(4) and (5), allowing functions of functions, or functions of functions of functions,
etc. But this is the condition for which we can prove theorems at the present
time, and it covers a number of interesting examples in algebra and number
theory.

If S is a coherent list S of type specifications, it makes sense to speak of “the
type assigned to a term t by S”, if there is at least one type specification in S
for the main symbol and arity of t. Namely, unless the main symbol of t is Ap,
only one specification in S can apply, and if the main symbol of t is Ap, then we
apply the specification that does not have value type Prop. Similarly, it makes
sense to speak of “the type assigned to an atomic formula by S”. When the main
symbol of t is Ap, we can speak of “the type assigned to t as a term” or “the
type assigned to t as a formula”, using the specification that does not or does
have Prop for its value type.
7 Intuitively, this says that if z has type X and t has type Y then lambda(z, t) has

type i(X,Y), the type of functions from X to Y .

X

Theorem 3. Let S be a coherent list of type specifications. Let s and t be two
correctly typed terms or two correctly typed atomic formulas with respect to S.
Let σ be a substitution produced by successful type-safe lambda unification of s
and t. Then sσ and tσ are correctly typed, and S assigns the same type to s, t,
and sσ.

Example. Let s be Ap(X, w) and t be a+b. We can unify s and t by the substitu-
tion σ given by X := lambda(x, x + b) and w := a. If type(0, Ap(i(0, 0), 0)) and
type(0, +(0, 0)) then these are correctly typed terms and the types of sσ and a+b
are both 0. Perhaps Ap also has a type specification type(Prop, Ap(i(0, P rop), 0)),
used when the first argument of Ap defines a propositional function. However,
this additional type specification will not lead to mis-typed unifications, since
the two type specifications of Ap are coherent.
Proof. We proceed by induction on the length of the computation by lambda
unification of the substitution σ.

(i) Suppose s is a term f(r, q) (or with more arguments to f), and either
f is not Ap, or r is neither a variable nor a lambda term. Then t also as the
form f(R, Q) for some R and Q, and σ is the result of unifying r with R to
get rτ = Rτ and then unifying qτ with Qτ , producing substitution ρ so that
σ = τ ◦ ρ. By the induction hypothesis, rτ is correctly typed and gets the same
type as r and Rτ ; again by the induction hypothesis, qτρ and Qτρ are correctly
typed and get the same type as q. Then sσ = f(rσ, qσ) = f(rτρ, qτρ) is also
correctly typed.

(ii) The argument in (i) also applies if s is Ap(r, q) and t is Ap(R, Q) and
lambda unification succeeds by unifying these terms as if they were first-order
terms.

(iii) If s is a constant, then sσ is s and there is nothing to prove.
(iv) If s is a variable, what must be proved is that t and s have the same value

type. A variable must occur as an argument of some term (or atom) and hence
the situation really is that we are unifying P (s, . . .) with some term q, where P
is either a function symbol or a predicate symbol. If P is not Ap, then q must
have the form P (t, . . .), and t and s occur in corresponding argument positions
(not necessarily the first as shown). Since these terms or atoms P (t, . . .) and
P (s, . . .) are correctly typed, and S is coherent, t and s do have the same types.
The case when P is Ap will be treated below.

(v) Suppose s is Ap(r, q), where r = lambda(z, p), and z does occur in p.
Then s beta-reduces to p[z := q], and lambda unification is called recursively to
unify p[z := q] with t. By induction hypothesis, t, tσ, p[z := q], and p[z := q]σ are
well-typed and are assigned the same value type, which must be the value type,
say V , of p. Since S is coherent, the type assigned to lambda(z, p) is i(U, V),
where U is the “ground type”, the type of the second argument of Ap. The type
of q is U since q occurs as the second arg of Ap in the well-typed term s. The type
of s, which is Ap(r, q), is V . We must show that sσ is well-typed and assigned
the value type V . Now sσ is Ap(rσ, qσ). It suffices to show that qσ has type U
and rσ has type i(U, V). We first show that the type of qσ is U . Since z has type
U in lambda(z, p), qσ occurs in the same argument positions in p[z := q]σ as z

XI

does in p, and since z does occur at least once in p, and p[z := q]σ is well-typed,
qσ must have the same type as z, namely U . Next we will show that rσ has
type i(U, V). We have rσ = lambda(z, p)σ = lambda(z, pσ) (since the bound
variable z is not in the domain of σ). We have pσ[z := qσ] = p[z := q]σ] and the
type of the latter term is V as shown above. The type of A[z := B] is the type
of A, and moreover A[z := B] is well-typed provided A and B are well-typed
and z gets the same type as B. That observation applies here with A = pσ and
B = qσ, since the type of z is U and the type of qσ is U . Therefore the type
of pσ is the same as the type of pσ[z := qσ], which is the same as p[z := q]σ,
which has type the same as p[z := q], which we showed above to be V . Since
rσ = lambda(z, pσ), and z has type U , rσ has type i(U, V), which was what had
to be proved.

(vi) Suppose s is Ap(r, w) and r is not a variable. Then we create a fresh
variable X, unify Ap(X, w) with t generating substitution σ. By induction hy-
pothesis, tσ has the same type as Ap(X, w). Then we unify Xσ with rσ, gen-
erating substitution τ ; by induction hypothesis, the types of Xσ and rσ agree.
The result of the unification is στ . We have to check that Ap(r, w)στ has the
same type as tστ . But Ap(r, w)στ = Ap(rσ, wσ)τ ; since rσ and Xσ have the
same type, Ap(r, w)στ has the same type as Ap(Xσ, wσ)τ = Ap(X, w)στ = tστ .

(vii) There are two cases not yet treated: when s is Ap(X, w), and when
s is a variable X occurring in the context Ap(X, w). We will treat these cases
simultaneously. As described in the previous section, the algorithm will (1) select
a masking subterm qσ of tσ (2) unify w and q with result σ (failing if this fails),
(3) create a new variable z, and substitute z for some or all occurrences of qσ
in tσ, obtaining r, and (4) produce the unifying substitution σ together with
X := lambda(z, r).

Assume that t is a correctly typed term. Then every occurrence of q in t
has the same type, by the definition of correctly typed. Since by hypothesis
this is type-safe lambda unification, q and w have the same type, call it U .
Since q unifies with w, by the induction hypothesis qσ and wσ are correctly
typed and get the same types as q and w, respectively, namely U . If Ap(X, w)
has type Prop, then the type of s and that of t are the same by hypothesis.
Otherwise, both occur as arguments of some function or predicate symbol P , in
corresponding argument positions, and hence, by the coherence of S, they are
assigned the same (value) type V . Then X has the type i(U, V). We now assign
the fresh variable z the type U ; then r is also correctly typed, and gets the same
type V as s and t, since it is obtained by substituting z for some occurrences
of qσ in tσ. For this last conclusion we need to use the fact that q is a proper
subterm of t, by the definition of type-safe unification; hence r is not a variable,
so the value type of r is well-defined, since S is coherent. Since S is coherent,
there is a type specification in S of the form type(i(U, V), lambda(U, V)). Thus
the term lambda(z, r) can be correctly typed with type i(U, V), the same type
as X. Hence Xσ has the same type as X, and sσ has the same type as s. That
completes the proof of the theorem.

XII

Theorem 4 (Implicit Typing for Lambda Logic). Let A be a set of clauses,
and let S be a coherent set of type specifications such that each clause in A is
correctly typeable with respect to S. Then all conclusions derived from A by
binary resolution, hyperresolution, factoring, paramodulation, and demodulation
(including beta-reduction), using type-safe lambda unification in these rules of
inference, are correctly typeable with respect to S, provided paramodulation from
or into variables or Ap terms is not allowed, and demodulators are not allowed
to have variables or Ap terms on the left.

Example. To show that the second restriction on paramodulation is necessary:
Suppose Ap has a type specification type(Prop, Ap(i(0, P rop), 0)). Without the
restriction, we could paramodulate from x + 0 = x into Ap(X, x), unifying x + 0
with Ap(X, x) as in the example after Theorem 3, with the substitution X :=
lambda(x, x + 0). The conclusion of the paramodulation inference would be x.
That is a mistyped conclusion, since x does not have the type Prop, although
Ap does have value type Prop.
Proof. Note that a typing assigns type symbols to variables, and the scope of a
variable is the clause in which it occurs, so as usual with resolution, we assume
that all the variables are renamed, or indexed with clause numbers, or otherwise
made distinct, so that the same variable cannot occur in different clauses. In
that case the originally separate correct typings T [i] (each obtained from S by
assigning values to variables in clause C[i]) can be combined (by union of their
graphs) into a single typing T . We claim that the set of clauses A is correctly
typed with respect to this typing T . To prove this correctness we need to prove:

(i)each occurrence of a variable in A is assigned the same type by T . This fol-
lows from the correctness of C[i], since because the variables have been renamed,
all occurrences of any given variable are contained in a single clause C[i].

(ii) If r is f(u, v), and r occurs in A, and f(u, v),u, and v are assigned types
a,b,c respectively, then there is a type specification in S of the form type(a, f(b, c)).
If the term r occurs in A, then r occurs in some C[i], so by the correctness of
T [i], there is a type specification in S as required.

(iii) each occurrence of each term r that occurs in A has the same value type.
This follows from the coherence of S. The different typings T [i] are not allowed
to assign different value types to the same symbol and arity.

Hence A is correctly typed with respect to T .
All references to correct typing in the rest of the proof refer to the typing T .
We prove by induction on the length of proofs that all proofs from A using

the specified rules of inference lead to correctly typed conclusions. The base
case of the induction is just the hypothesis that A is correctly typeable. For
the induction step, we take the rules of inference one at a time. We begin with
binary resolution. Suppose the two clauses being resolved are P |Q and −R|B,
where substitution σ is produced by lambda unification and satisfies Pσ = Rσ.
Here Q and B can stand for lists of more than one literal, in other words the
rest of the literals in the clause, and the fact that we have shown P and −R as
the first literals in the clause is for notational convenience only. By hypothesis,
P |Q is correctly typed with respect to S, and so is −R|B, and by Theorem

XIII

3, Pσ|Qσ and −Rσ|Bσ are also correctly typed. The result of the inference is
Qσ|Bσ. But the union of correctly typed terms, literals, or sets of literals (with
respect to a coherent set of type specifications) is again correctly typed, by the
same argument as in the first part of the proof. In other words, coherence implies
that if some subterm r occurs in both Qσ and in Bσ then r gets the same value
type in both occurrences. That completes the induction step when the rule of
inference is binary resolution.

Hyperresolution and negative hyperresolution can be “simulated” by a se-
quence of binary resolutions, so the case in which the rule of inference is hyper-
resolution or negative hyperresolution reduces to the case of binary resolution.
The rule of “factoring” permits the derivation of a new clause by unifying two
literals in the same clause that have the same sign, and applying the resulting
substitution to the entire clause. By Theorem 3, a clause derived in this way is
well-typed if its premise is well-typed.

Now consider paramodulation. In that case we have already deduced t = q
and P [z := r], and unification of t and r produces a substitution σ such that tσ =
rσ. The conclusion of the rule is P [z := qσ]. We have disallowed paramodulation
from or into variables or Ap terms in the statement of the theorem; therefore
t and r are not variables or Ap terms. Let us write Type(t) for the value type
of (any term) t. Because t = q is correctly typed, we have Type(t) = Type(q).
Since neither t nor q is an Ap term, then they have the same functor, and
hence Type(tσ) = Type(qσ). Then by Theorem 3, Type(tσ) = Type(t) and
Type(qσ) = Type(q) = Type(t) = Type(tσ). Thus in any case Type(qσ) =
Type(tσ). The value type of r is the same at every occurrence, since P [z := r] is
correctly typed. To show that P [z := qσ] is correctly typed, it suffices to show
that Type(qσ) = Type(r), which is the same as the type of rσ. Since the terms t
and r unify, and neither is a variable, their main symbols are the same, since by
hypothesis r is not of the form Ap(X, w), with X a variable or functional term.
Hence Type(r) = Type(rσ) = Type(tσ) = Type(qσ), which is what had to be
shown.

Now consider demodulation. In this case we have already deduced t = q and
P [z := tσ] and we conclude P [z := qσ], where the substitution σ is produced
by lambda unification of t with some subterm ρ of P [z := ρ]. Taking r = tσ, we
see that demodulation is a special case of paramodulation, so we have already
proved what is required. That completes the proof of the theorem.

Example: fixed points. There is a fixed point argument that shows that the
(unrelativized) group axioms are contradictory in lambda logic. Briefly, we con-
struct g such that Ap(g, x) = c ∗Ap(g, x); it follows that c is the group identity,
so there is only one object, a contradiction in lambda logic.8 The fixed point is
constructed using a term Ap(f, Ap(x, x)). The part of this that is problematic
is Ap(x, x). If the type specification for Ap is type(V, Ap(i(U, V), U)), then for
Ap(x, x) to be correctly typed, we must have V = U = i(U, U). If U and V are
type symbols, this can never happen, so the fixed point construction cannot be
correctly typed. It follows from the theorem above that this argument cannot be

8 Semantically, this means that you cannot make a lambda model into a group.

XIV

found by Otter-λ from a correctly typed input file. In particular, in an input file
containing correctly typed axioms, we will not get a contradiction from a fixed
point argument.

On the other hand, in file lambda4.in, we show that Otter-λ can verify the
fixed-point construction. The input file contains the negated goal

Ap(c, Ap(lambda(x, Ap(c, Ap(x, x))), lambda(x,Ap(c, Ap(x,x)))))
6= Ap(lambda(x, Ap(c, Ap(x, x))), lambda(x, Ap(c,Ap(x, x)))).

Since this contains the term Ap(x, x), it cannot be correctly typed with respect
to any coherent list of type specifications T . Otter-λ does find a proof using
this input file, which is consistent with our argument above that fixed-point
constructions will not occur in proofs from correctly typeable input files. The
fact that the input file cannot be correctly typed, which we just observed directly,
can also be seen as a corollary of the theorem, since Otter-λ finds a proof.

To summarize: (1) The (unrelativized) axioms of group theory are contra-
dictory in lambda logic, but if we put in only correctly-typed axioms, Otter-λ
will find only correctly typed proofs, which will be valid in the finite type struc-
ture based on any group, and hence will not be proofs of a contradiction. (2)
We already knew that resolution plus factoring plus paramodulation from non-
variables is not refutation-complete, even for first-order logic; and we remarked
when pointing that out that this permits typed models of some theories that
are inconsistent when every object must have the same type. Here is another
illustration of that phenomenon in the context of lambda logic. (3) Of course
Otter-λ can find the fixed-point proof that gives the contradiction; but to make
it do so, we need to put in some non-well-typed axiom, such as the negation of
the fixed-point equation.

5 Enforcing type-safety

The theorems above are formulated in the abstract, rather than being theorems
about a particular implementation of a particular theorem-prover. As a practical
matter, we wish to formulate a theorem that does apply to Otter-λ and covers
the examples posted on the Otter-λ website, some of which have been mentioned
here. Otter-λ never uses paramodulation into or from variables, so that hypoth-
esis of the above theorems is always satisfied. But Otter-λ does not always use
only type-safe lambda unification; nor would we want it to do so, since it can
find some untyped proofs of interest, e.g. fixed points, Russell’s paradox, etc.
We have two ways of restricting Otter-λ: implicitly, by putting set(types) in
the input file, or explicitly, by putting a list of explicit type specifications in the
input file. This command set(types) causes Otter-λ to use restricted lambda
unification. That means that, when selecting a masking subterm, only a second
argument of Ap or a constant will be chosen. We prove that this enforces type
safety under certain conditions:

XV

Theorem 5 (Type safety of restricted lambda unification). Suppose that
a given set of axioms admits a coherent type specification in which there is no typ-
ing of the form Ap(U, U), and all constants receive type U . Then all deductions
from the given axioms by binary resolution, factoring, hyperresolution, demodu-
lation (including beta-reduction) paramodulation (except into or from variables
and Ap terms), lead to correctly typeable conclusions, provided that restricted
lambda unification is used in those rules of inference.

Proof. It suffices to show that lambda unifications will be type-safe under these
hypotheses. The unification of Ap(x, w) with t is type-safe (by definition) if
in step (1) of the definition of lambda unification, the masking subterm q of
t has the same type as w. Now q is either a constant or term containing x
that appears as a second argument of Ap, since those are the “restrictions” in
restricted lambda unification. If q is a variable then it must be x, and must
occur as a second argument of Ap; but x occurs as a first argument of Ap, and
all second arguments of Ap get the same type, so there must be a typing of
the form type(T, Ap(U, U)). But such a typing is not allowed, by hypothesis.
Therefore q is not a variable. Then if q contains x, it must occur as a second
argument of Ap, as does w; hence by hypothesis w and q get the same type.
Hence we may assume q is a constant. But by hypothesis, all constants get the
same type as the second arguments of Ap. That completes the proof.

Examples. The proofs by induction in [2] fulfill the hypotheses of this theorem,
and hence we are justified in not relativizing the induction axiom to N . The no-
nilpotents example appears prima facie not to meet the hypotheses of Theorem
5, since that theorem requires that all constants have the same type as the second
argument of Ap, in this case N , but we have a constant o of type R. This is not a
serious problem; it can be solved either by implicit typing or by explicit typing.
To solve it by implicit typing, we replace o in the axioms by zero(0), where zero
is a new function symbol with the type specification type(R, zero(N)).

References

1. Beeson, M., Lambda Logic, in Basin, David; Rusinowitch, Michael (eds.) Automated
Reasoning: Second International Joint Conference, IJCAR 2004, Cork, Ireland, July
4-8, 2004, Proceedings, Lecture Notes in Artificial Intelligence 3097, pp. 460-474,
Springer (2004).

2. Beeson, M., Mathematical induction in Otter-λ, accepted for publication in J. Au-
tomated Reasoning, to appear in 2006. Available on the author’s website.

3. McCune, W., Otter 3.0 Reference Manual and Guide, Argonne National Laboratory
Tech. Report ANL-94/6, 1994.

4. Wick, C., and McCune, W., Automated reasoning about elementary point-set topol-
ogy, J. Automated Reasoning 5(2) 239–255, 1989.

