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Chapter 1

Introduction

These lectures contain some of the fundamental results needed to read papers on
minimal surfaces. I have attempted to make them as self-contained as possible,
rather than just a list of references to books containing these results. The title
doesn’t mention the word “Introduction”, although the background assumed
here is only calculus and the most elementary parts of the theory of functions of
a complex variable. The necessary differential geometry and theory of harmonic
functions is introduced and proved. However, a true introduction to minimal
surfaces would involve more pictures of examples, and discussion of other results
not presented here. For such books, see the list of references. These lectures
have a different purpose: to supply proofs that don’t constantly refer you to
some other place for the details. At present that aim has not been completely
achieved; for example Lichtenstein’s theorem is not completely proved here.
The first chapters accompanied lectures given at San José in November 2001.
Later chapters were added in July, 2007, including the unpublished material
from [2]. The bibliography lists a few reference books on the subject. There are
many more, which explore different aspects of the theory of minimal surfaces.

1.1 Notation and Basic Concepts

The open unit disk is D; the closed unit disk is D; the unit circle is S?.

C™ means possessing n continuous derivatives. C° means continuous.

Surfaces of disk type are given by maps u : D — R3. We will suppose they
are at least C® in D and C" on the boundary. Partial derivatives will be denoted
by subscripts u, and u,. A surface is regular at a point (x,y) in D if the tangent
plane is well-defined there, i.e. u, and u, have nonzero cross product. Surfaces
are required to be regular except at isolated points. A “regular point” of u is
a point where u is regular. Another way of expressing regularity is that the
Jacobian matrix Vu = (uy, u,) has maximal rank two.

A Jordan curve is a continuous one-one map I from S' into R3. A reparametriza-
tion of I" is another Jordan curve of the form I" o ¢, where ¢ is a one-one map
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of S into S*.

A surface u is said to be bounded by I' in case u restricted to S' is a
reparametrization of T.

Plateau’s Problem is this: Given a Jordan curve I', find a surface of least
area bounded by T'.

The space of all vectors in R? which are tangent to the surface u at a regular
point (x,y) is a vector space T, called the tangent space. A basis for the space
is formed by u, and u,,.

The unit normal N = N(x,y) at p is given by
N e X Uy
[uz X wyl

We claim that N, and IV, are tangent vectors. Proof: N - N = 1. Dif-
ferentiating, we have N - N, = 0 and N - N, = 0, so N, and N, are tangent
vectors.

1.2 Weingarten map and fundamental forms

In this section, we fix a point (z,y) at which u is regular, i.e. ugz x u, does not
vanish. We have assumed that non-regular points of a surface are isolated, by
definition.
The Weingarten map S = S(z,y) is a linear map of T}, into itself, defined as
follows: If v = v!u, + v?u, then
Sv=—v'N, — ’UQNy = —v'N;

where the repeated subscript implies summation, and v* means v;, but consid-
ered as a column vector (“contravariant”). (We always sum one raised index
times one lowered index.) The letter S is used because this is also known as
the “shape operator”. In this section we write u; for the derivative of u with
respect to x;, risking confusion with the components of u, but avoiding double
subscripts as in ug,.

Lemma 1 The Weingarten map is self-adjoint. That means Sv-w = v - Sw.
Proof: Differentiate IV - u; = 0 with respect to ;. We get
Nj-u; + N -u; =0.
Therefore
Ni-uj = Nj-uy
since both are equal to N - u;;. Hence
Sv-w = —Np'-uw

= —N;-uv'w’

= —u;- Njo'w’

= —wu' - Njuw’

= ov-Sw
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That completes the proof of the lemma.
Thus we can define the following three symmetric bilinear forms:

I(v,w) = v-w
IT(v,w) = Sv-w
ITI(v,w) = Sv-Sw

These are called the first fundamental form, second fundamental form, and third
fundamental form of .

There are several systems of notation for the coefficients of the fundamental
forms. We have

Gij = Ui Uy
bij = —Ni s Uy
Cij = Ni . Nj

Thus the b;; are the entries in the matrix of the shape operator; that is why
they are defined with a minus sign. Since N -u; = 0, by differentiating we have
Nl--uj—i-N-uij:O, SO
bij = uij . N

In some books this is taken as the definition of b;;, and then the fact that the
bi; are the coeflicients of the shape operator is a lemma, instead of the other
way around as here.

Remember bij = bji =N- Wij, and of course 9i5 = 9ji-

The older (nineteenth-century) notation uses E, F,G,L, M, and N, defined
by

g21 g22 F G

B b1y bi2 _ L M

bo1 boo M N
Hopefully, when you see this notation (in old books), you won’t confuse N with
the unit normal. Here we have used a different font to make the distinction. We

have
W = \/EZ \/EG—F2 = \/det(gij)

We define ¢% to be the coefficients of the inverse of G, so
g'! 21 1 a _F
g2 g2 | T w2 | -F E

The Weingarten equations tell how to compute N, and N, in terms of u,
and uy:

ol m]-[F ¢
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where bf = b;,¢™, and as usual repeated indices imply summation. To find this
formula for the b/, first write, with unknown coefficients a}, N; = alu;. Now
take the dot product with wy:

J

Ni-up = ajuj-ug

That is,
~bix = ajgjk

Now we can solve for the af by using the inverse matrix of G:

J . kp Jsp
a; 9jkg 105
p
i

a
a

k
= —big™

This is the formula for the coefficients in the Weingarten equations.

1.3 Mean Curvature and Gauss Curvature

The geometric meaning of the second fundamental form can best be seen by
finding an orthonormal basis in which the Weingarten map S is diagonal. Let
k1 and ko be the eigenvalues of the matrix of S. Since S is self-adjoint, standard
linear algebra tells us that it can be diagonalized, and that the eigenvalues are
the minimum and maximum of the Rayleigh quotient I1(v,v)/I(v,v). Let p and
q form a basis in which S is diagonal. If k1 # k2 then p and ¢ are automatically
orthogonal, since k1p-q=Sp-q=p-Sq = kop-q. If K1 = Ko, however, then
any orthogonal unit vectors p and ¢ will do.!

Thinking geometrically instead of algebraically, we write VpN = k1p instead
of the equivalent S(p) = k1p. The values k1 and ko are called the principal
curvatures of the surface u at the point (z,y). We will next explain the reason
for this terminology, but we must first review the basic facts about space curves.

A continuous, locally one-to-one map from an interval to R3 is called a
space curve, or just a curve. A reparametrization of such a curve is of the form
n(t) = v(¢(t)) for some monotonic function ¢. (The interval of definition of
the reparametrized curve may be different.) If v is a C? space curve, it has
an arc length parametrization in which the parameter ¢ equals the arc length
fot |4 (€)|? d¢. Let T'(t) be the unit tangent to v(¢) in such a parametrization.
Then the curvature of v is defined to be |Ty].

Now to explain the connection between curvature and the Weingarten map
(or shape operator). Consider planes passing through P = u(x,y) whose normal
at P lies in the tangent space, i.e. planes which contain the unit normal N. Each

IThis proof is non-constructive, and the consequence is that it does not show that p and
q can be chosen to depend continuously on the point in the parameter domain, near a point
where kK1 = k2.
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such plane intersects the surface u (technically, the range of u) in a curve. If
the plane’s normal is cos0p + sin fq then the curvature of the curve turns out
to be (as a calculation shows)

#k(0) = cos? Ok + sin? Oy,

Averaging over all angles 6 between 0 and 27 we find that the average curvature
of such curves is (k1 + k2)/2. Accordingly this quantity is called the mean
curvature of u at (z,y). It is always denoted by H:

=t
2
The Gauss curvature K is defined to be k1x2. Note that H and K are the
two elementary symmetric functions of k1 and k.

We define W := |ug x u,|. We have

W = [l 2y 2 — [ uy |2

The area element is Wdx dy and the area is given by

Alu] = /D W da dy.

The formulas in this section apply to any surface at any regular point. They
are basic to the subject of differential geometry, rather than being specific to
minimal surfaces. They are necessary to connect the variation of area with
curvature, which is basic to the theory of minimal surfaces.

Recall that the principal curvatures k1 and ks are the eigenvalues of S. In
the eigenvalue equation Sv = kv, write v = v'u;, and w = wlu;, and write out
the equation Sv-w = kv - w as follows:

Sv = by’ by definition of b;;
SU - w = —bijvjwi
= bijviwj since bij = bji
= KU W
= Iigij’l}i’wj

Since this is true for all w = (w!, w?), we have

bijvi = /{gijvi.
Thus the eigenvalue equation is
Bv = kGv

(reading v = (v!,v?) as a column vector). Thus, k1 and ko are the roots of
det(B — kG) = b1 — kg1 bi2 — Kgi12

b21 — Kg21 b22 — Kg22
det(gij)r? — (b11g22 + bazg11 — biagar — bargua)k + det(byy)
det(gij) [’12 - (/fl + HQ)H + /{1/12}
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Comparing coefficients of the powers of k, we obtain
det B

det G
2H = k1 + ke = bijgij

K = K1k = = det G™'B = det b’

Since g% = ¢’*, this last expression is equal to trace(G~!B), and can also be
written as bi—l— b3, so K and 2H are respectively the determinant and trace of
the matrix b] = gikbk‘j. Since we already worked out the Weingarten equations
for bg and the formula for the coefficients of G~!, we are finished. The final
results are

K = detg™by,
2H = g"b;
Expressing these equations in nineteenth-century notation we have
LG+ NE - 2MF
2W2
LN — M?
W2
The Gauss map is the unit normal, considered as a map from D to the
sphere S2. The determinant of the Jacobian of this map is K, so the area
element is K dx dy. The “Gaussian area” of a surface is [ KWdz dy, the area

of its “Gaussian image” on the sphere, counting multiplicities. The Gauss map
plays an important role in the theory of minimal surfaces.

2H =

K =

1.4 The definition of minimal surface

Surfaces as well as Jordan curves can be reparametrized; if ¢ is a €2 diffeomor-
phism of D we define u o ¢ to be a reparametrization of the surface u. It is an
exercise in calculus to show that A[u o ] = Alu].

A critical point of the functional A is a surface u such that the Frechet
derivative D A[u] is zero. In less fancy language, this means the following. Let
¢ be any function from D to R, vanishing on S', C? in D and C' in the
closed unit disk D. Consider u* = u 4 t@N. This is called a normal variation.
The parameter ¢ is written as a superscript because we we use subscripts for
differentiation. The first variation of area in direction @ is defined to be

DA[ul(p) = (d/dt) A[u'] 1=

Then w is a critical point of A if and only if DA[u](p) = 0 for all ¢ satisfying
the conditions mentioned. The terminology “stationary point” is also used to
mean the same as “critical point”.2

2T0o use the Frechet derivative we technically need to specify a function space, and prove
that the area functional is Frechet-differentiable on that space. We have not done that here,
but the reader worried about it can just use the words “first variation of area” instead of
“Frechet derivative” for DA[u]. Because we are about to derive a simple formula for this first
variation, the exact function space we use does not matter much.
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A surface of least area bounded by I would be a critical point of A, but not
necessarily conversely. There could be relative minima of area which are not
absolute minima of area. There can also be “unstable” critical points of area
which are not even relative minima.

We now come to the first theorem in the subject of minimal surfaces.

Theorem 1 The surface u is a critical point of A if and only if its mean cur-
vature H is identically zero.

Proof. The proof depends on the following formula for the first variation of area:

DA[u](p) = 2/DHW<pda: dy

Once we have established this formula, the result follows from the so-called “fun-
damental lemma of the calculus of variations, which says that if f is continuous
and [, f(x,y)e(x,y)dedy = 0 for all ¢ vanishing on S and C* in D, then
f(z,y) is identically zero. This lemma is itself easy to prove: if f is nonzero at
(x,y) in D, say f(z,y) > 0, then by continuity there is a neighborhood of (z, )
in which f is positive; and we can choose ¢ to be positive in that region and
vanish outside it (it takes some argument to do this in a C® way, but it isn’t
deep), but this leads immediately to a contradiction. So the proof boils down
to proving the stated formula for the first variation.
Let ¢ vanish on S! and be C? in D. Define

U =u+teN.

Then
Ali] = / VEG — 2 dudy
D

and we have, neglecting terms which are O(#?),

E = @
(ug + tp. N + tgaNx)Q
ui + 2t N uy,

= ui + 2tg0b11

Similarly
G = a
= ’U,,l2} + 215901)22
Then
EG = EG +to[ulbs + ujbi]

EG + to[g11b22 + gazbi1]
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We have
F = -,
= (ug + t0eN 4+ toN,) - (uy + toy N + toN,)
= F+to(bia+b2)
F? = F? 4 2tg[giabia + go1bai]
Thus
EG—F? = EG - F?+2tp[g11bs2 + gazb11 — g12b12 + ga1b21]

= EG— F? +2toW?3g"b;;

in view of the formula for the ¢*/. But now we recognize the formula for the
mean curvature which we calculated using the Weingarten equations! Namely,
2H = g"b;;. Thus

EG—-F? = EG-F?+4toW?H
We have thus proved, remembering W2 = EG — F?, that

/ VW21 + 4tpH) dx dy + O(t?)
D

/ W [l + teH] dx dy + O(t?)
D

Alal

/ W dx dy + 2t/ HW dx dy + O(t?)
D D
It follows that
DAul(p) = / Y2HW dx dy
D

That was the formula for the first variation stated above; now that we have
derived it, the proof is complete.

Definition 1 u is called a minimal surface if it has zero mean curvature.

1.5 Non-parametric minimal surfaces

The surfaces we have defined are sometimes called parametric surfaces, because
they are given by a vector function u of parameters x,y in D. By contrast, a sur-
face given by a scalar function Z = f(z,y) is said to be in non-parametric form.
Of course, every surface in non-parametric form can be given parametrically by
the vector function (x,y, f(x,y)), but not conversely.?

3When dealing with parametric surfaces, we use lower-case variables in the parameter
domain, e.g. z = z + iy, and upper-case variables for the coordinates X,Y, and Z in R3.
When dealing with non-parametric surfaces, we usually use lower-case « and y in place of X
and Y, and either z or Z for the third coordinate.
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We now consider surfaces given by z = f(z,y) where (z,y) ranges over some
open set §2 in the plane, usually bounded by a Jordan curve. One can calculate
the mean curvature of such a surface, using the explicit formulas for H for
parametric surfaces, and the parametrization (z,y, f(z,y)). One finds

W2

H =
where
W2=1+f2+f..
Therefore, the equation for the surface to be minimal is
(L + [ foa = 2fafyfoy + L+ £2) fyy = 0.

This is the non-parametric minimal surface equation. It is nonlinear and elliptic
(for those who know something about differential equations).

Alternately, one can derive this equation by considering the first variation
of area among non-parametric surfaces. We have Ag = [ W dz dy. Considering
the variation in the direction ¢, where ¢ vanishes on the boundary 09 and is
C3 in Q, and setting DA[f](¢) = 0, we find after a calculation that

div (%f) =0

which is another way to write the minimal surface equation.

1.6 Examples of minimal surfaces

Plane. The “trivial” minimal surface is a plane.

Catenoid. This is a surface obtained by rotating a catenoid around the z-axis:

Z
r = « cosh <—>
«

Taking the parameter  to be Z/a, and y to be the polar angle often written as
0, it can be parametrized by

a cosh x cosy
—acoshxsiny
ax

with —oco <z <oocand 0 <y < 27.

Helicoid. This can be written in the form Z = af, where 6 is a polar angle in
the XY-plane. Taking y = 6 and r = sinh z, we have the parametrization

asinh zsiny
asinh z cosy

ay
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A portion of the helicoid can be written in non-parametric form as Z =
acosh™(ra), provided the domain © does not include the origin, where the
boundary values are not continuous and the gradient is not bounded.

Scherk’s (first) surface.

7 —In COSY

cosT
is defined on the square of side 7w centered at the origin, and on all “black
squares” of the infinite checkerboard containing that square as one of its black
squares. It is only defined on those squares since cosy and cosx must have the
same sign.

Enneper’s surface. We give this surface using polar coordinates in the parameter
domain, which can be any disk about the origin.

rcosf — 113 cos 30
u(r,0) = | —rsind — 113 sin 30

3
72 cos 260

1.7 Calculus review

In this section we remind the reader of some results in two-dimensional vector
calculus. The reader is assumed to have studied vector calculus, which usually
includes both two and three dimensional calculus, but there is a gap between
completing the course and having all the formulas at your fingertips without
having to think about them. Here we concentrate on the two-dimensional for-
mulas.

Using subscript notation for differentiation we have

Vu = (ug,uy)
V(u,v) = (ug,vy)
AU = Upy + Uyy
VZu when w is a scalar function

These operators can be applied either to a scalar function u or a vector function
u. When u is a scalar, Vu is called the gradient of u, sometimes written grad
u. When u is a vector, Vu is called the divergence of u, sometimes written div
u. Whether u is a vector or scalar, Au is called the Laplacian of w.

When u is a vector, we do not have Au= V?u. Indeed if u = (p, q) we have
Au = (Pyz + Pyys Qws + qyy) While V2u = (pys, qyy). In three dimensions we
have Au = V?u —V x (V x u), but this equation, the cause of many difficulties
in vector calculus, is not used in the theory of minimal surfaces, so we will not
even trouble to explain the meaning of V x w.

We assume that the reader knows what “continuous” and “differentiable”
mean. The unit circle S is {{x,y) : 22 + y? = 1}. Its interior is the unit disk
D. The closed unit disk D is {(x,y) : 2 + y? < 1}. A function is said to be
(of class) C* on a set § if it has first, second, and up to k-th derivatives on
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Q, and all those derivatives are continuous. Thus C! means that the function
is differentiable and the derivative is continuous. In case the set is not open,
being differentiable at a boundary point does not imply that the function is
even defined off the set. For example, |z| is differentiable on [0, 1], but not on
[—1,1]. As another example: /z is C' in (0,1) but not in [0, 1].

A Jordan curve is a continuous, one-to-one image of S'. A famous theorem
called the Jordan curve theorem says that a Jordan curve lying in a plane
divides its complement into two open sets, one bounded (the “interior”) and
one unbounded (the “exterior”). A plane domain is the interior of a C* Jordan
curve.

One form of Green’s theorem says that if F' is any vector function defined
in a plane domain Q bounded by a C* Jordan curve C, then

/F-nds:/VFdA (1.1)
c Q

where the integral on the right is a two-dimensional integral, and on the left,
n is the outward normal to the boundary curve C. Sometimes one uses two
integral signs to indicate an area integral, probably because when one wishes
to evaluate such an integral, it is reduced to two one-dimensional integrations;
but we shall usually just use one integral sign, since the dA and the subscript
on the integral already contain the dimension information.

Applying this version of Green’s theorem to the vector function Vu, when
u is a scalar function, we find

/Vu-nds: AudA
c Q

The integrand on the left, Vu - n, is the outward normal derivative of u, often
written u,. With that notation, Green’s theorem takes the form

/ u,ds = | AudA (1.2)
c Q

In the special case that the domain € is the unit disk D, we obtain

/ urds:/ AudA (1.3)
St D

There is a nice formula for the Laplacian of a product (derived using the chain
rule):
A(uv) = vAu + 2VuVo + ulv

Applying (1.2) we have

/C (w),ds = | A(uw)

Q

/ uv, +ovu,ds = / ulv + 2VuVo +vAudA
c Q
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In fact this easily-remembered formula combines two copies of another form of
Green’s theorem:

/ uv, ds = / ulAv+ VuVodA (1.4)
c Q

Mathematicians often refer to applications of Green’s theorem as “integra-
tion by parts”.

Green’s theorem for vector functions. Formula (1.4) is also valid for vector
functions u and v, if VuVwv is properly interpreted. Say u = (u1,us,us) and
v = (v1,v2,v3). Applying (1.4) to the components and adding, we get the
desired formula, provided that

3
VuVv = Z VUiV’Ui
i=1
It would be incorrect to interpret VuVv any other way. Technically there is no

other way to interpret it, as there is no definition of a vector Vu when w is a
vector.
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Harmonic Functions

Recall the definition of the Laplacian operator: Au := ug, + uy,. A function
is called harmonic if Au = 0. This lecture is devoted to deriving some basic
facts about harmonic functions, as these are indispensable tools in the study of
minimal surfaces. The real and imaginary parts of a complex-analytic function
are harmonic, since if f(z) = u + év then the Cauchy-Riemann equations are
Uy = vy and u, = —v,. Hence g, + vyy = Uyy — gy = 0.

2.1 Complex differentials

It is often convenient to use complex differentials defined as follows, where z =

T+ 1y

0 170 .0

=~ = —(=_;=

0z 2\ 0z Oy

0 1/ 0 w 0

R Y

0z 2\ Oz dy
Any real-analytic of x and y can be written as a function of z and Z by replacing
z by 3(2+2) and y by (2—2)/(2i) in a power series for the function. This extends
the function to a function of two complex variables. On the two-dimensional
subspace of C? defined by requiring the variable Z to be the complex conjugate

of z, the extended function agrees with the original function.

We often write differentiation using a subscript; for example, u, instead of
ou
E.

These complex differentials simplify many calculations. For example: The
Cauchy-Riemann equations for f are just fz = 0. A function is analytic if it

depends only on z, not on z. We have
0%u 1
020z 4

so a function u is harmonic if and only if u,; = 0.

Au

17
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Here is our first application of complex differentials:

Lemma 2 If u is harmonic, then there exists a conjugate harmonic function v
such that f(z) = u+iv is complex-analytic. The function u, is complex analytic
and f, = 2u,.

Proof. By hypothesis Au = wu,z = 0, so u, satisfies the Cauchy-Riemann
equations and hence is complex-analytic. Integrating it with respect to z we
define f(z) =2 [u. dz, choosing the constant of integration so that f(z) agrees
with u(z) at some point zg. Then f is analytic. The real part of f is u since

1
Re /uzdz = 2Re/§(ux—iuy)(dx+idy)

/uwdx—i—uydy

- [ au

= u

The imaginary part of f is v.

When working with complex differentials, one must remember to treat z
and z as independent variables while differentiating. Only after finishing the
differentiations can we return to the submanifold of C? where Z is the complex
conjugate of z. What if we want to apply complex differentials to functions that
are only assumed to be C? rather than real-analytic? Is this legitimate? When
one asks this question one is usually told that the use of complex differentials
is just a formal device, abbreviating more complex expressions evaluating real
differentials. Of course this is correct for simple applications, such as the ones
above. But I have never seen a theorem about the use of complex differentials
formulated and proved. Of course the expression 0/0z can be replaced by
0/0x —i0 /0y, but we usually also replace x by z—z and y by (1/i)(z+ z). This
seems to assume that the formulas in which we make these replacements still
make sense for complex arguments, which is not true in general. So we must
be careful when using complex differentials that one of these two justifications
applies.

The following relations between complex differentials and polar coordinates
are often useful.

z = re

d d

_Z = _T +ido

z r

dz = e%dr+ire? do
d

do = —Z when integrating on S*
iz

dz = iedh when integrating on S*
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We have r, =

V2Z, = 2/(2r) = e /2 and 6, is calculated as follows:

10 = log(z/r)
= logz—logr
i, = 1/z—nr./r

1/z—z/(2r%)
1/2—1/(2z2)
1/(22)

0, = —i/(22)

26719

2r

Similarly 7> = /2 and 6; = i(logr); = irs/r = i /(2r).
Converting complex derivatives to polar coordinates is done as follows:

Uy = Upry+ uﬁez
1 _ip le G
= Ure 0
2 2
z
Uz = Up— — Ugls
2r
1 ., ie?
0
= Zure’ + —1up
2" 2r

We illustrate the use of these techniques by calculating Aw in polar coordinates:

iAu

z n z 7
Upz— +Up | — | — ugz—
"o "\ 2r > “2z

2
z 2r — 2Zrs )
Uri; UTT - Uezg
Z 2r — 2re~ei? /2 i
Urzg U’TT - u922—
z 2r —r 1
Urzg- + U 2 675
zZ U
Urzgs + Ir 075

1

4 492 4 2 2
1 N 1 N 1

—Upp + —Up + —U

4 4 4r2 %



20 CHAPTER 2. HARMONIC FUNCTIONS

Note the miraculous cancelation of the u,¢ terms. Multiplying by 4 we obtain
our final result,

1 1
AU = Upp + —U, + —5 Ugo-
r r

2.2 The Poisson integral

The boundary-value problem for the Laplacian is this: given continuous bound-
ary values f on S', find a continuous function u : D — R such that u restricted
to St is f and w is harmonic in the interior.

The solution of this boundary-value problem is given by Poisson’s integral,

27
u(z) = V[f] = i F(e)P(z, ) de

where P(z, @) is the Poisson kernel, given as follows, with ¢ = ¢ and z = re®:

1 C+ =z

— R

27 ¢ (—z

1 o 1 4 reif—)
2 1 — rei(@—%)

P(z,¢)

Multiplying the integrand’s numerator and denominator by the complex conju-
gate of the numerator and then simplifying, we obtain the following two forms
of the Poisson kernel:

1 11—
P —
(z.¢) 21 1 — 2rcos(6 — ) + 72
1 1—7r?

27 |eicos(0—¢) — |2

While the Poisson formula is reminiscent of Cauchy’s formula for analytic func-
tions, it cannot be proved by simply resolving Cauchy’s formula into real and
imaginary parts. It can be proved in several ways, each of which casts light on
the situation. First, we observe that P(z, ) (as a function of z) is harmonic
in the open disk D, since it is the real part of an analytic function. Hence if
we can differentiate under the integral sign in the definition of W[f], then u is
harmonic; that will be justified (for z in the open disk D) if f is bounded, for
example. Hence it only remains to show that ¥[f] does take on the boundary
values f. The following classical result is due to Schwartz:

Theorem 2 (Continuity of Poisson’s integral) Let f be a continuous func-
tion on S, and let u be defined by the Poisson integral V|| in the open disk
D, and let u(z) = f(z) on St. Then u is continuous in the closed unit disk.

Proof. Tt suffices to establish the continuity by radial limits, i.e.

lim u(re'®) = f(e")
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since if this is known, then we have
u(re®) = f(e)] < u(re™®) = ()] +[f(e') = f(?)]

Given € > 0, the first term can be made less than €/2 by taking r near 1, if
we have radial-limit continuity, and the second term can be made less than €/2
by the continuity of f. We proceed now to prove the radial-limit continuity.
Change the variable of integration in the Poisson integral from ¢ to ¢+ 6; since
the integrand is periodic, we can leave the limits of integration unchanged.
Using the last form of the Poisson kernel derived above, we have

i 1 (™ 1—r2 i
u(re”) = %/ leie — 7|2 (") dy

From the Poisson formula with constant boundary values 1, we have

1 (™ 1—7r2
— — —dp=1.
271'/ el —r|? 14

|

Technically we haven’t yet established the validity of the Poisson formula even
for constant boundary values, so this formula should be independently derived.
That can be done by Cauchy’s residue theorem using the first form of the Poisson
kernel given above. Here are the details: The preceding integral is equal to

1 " (+z

1 T(+z
— R d — R d
2r J_ e(—z ¥ 2w ¢ .=z ¥

= %Re /Sl(gi_z)% since ¢ = e'%?

o s
= ! /51<<<—z>d<

m (2mi(1 4 1)) by Cauchy’s residue theorem

1
—1
47
1 as claimed.

Hence

wre®) = 10 = o [ S 100+ ) - S0)] d,

:% 7'r|el¢_

Fix an € > 0. Since f is continuous, there exists § > 0 such that | f(¢)— f(0)| < e
when |¢ — 0] < §. Now we will estimate the boundary integral in three pieces:
one is the integral from —d to ¢, and the other two are from —7 to —J and from
6 to w. Thus

u(reie) — f(@) = Il + IQ + Ig

where

J - T
=g [ S 100110+ 6) - 0.

T or g2 -



22 CHAPTER 2. HARMONIC FUNCTIONS

and [; and I3 differ only in the limits of integration. We have

1 /% 1—72
L < e— | ———d
2= €2w/5|2w—rl2 7

< L /ﬂ L= ince the integrand is positi
€— I EE——— since € 1mtegrand 1S positive
= 9 ) e & P

< €

Now to estimate I3 and Is. Let M be the maximum of |f| on S!, and observe
that for |¢| > § we have

1]

| cos(@) + i sin(¢) — 7|

> sind

since if |¢| > 7/2 then cos(¢) is negative (so the expression is at least |r and
otherwise sin ¢ > sind.

I < 12M(1 2)/6 L 4
L= op T Pl
1 o
< —2M(1- 2/ / d
- 27 (1=r7) _r J_psin?é 4
< 2M.(12—7°)'
sin“

Similarly I3 is bounded by the same quantity. Putting the three estimates
together we have

u(rew) —f0) <e+ Sif\jé(l —r)

and taking the limit as » — 1 we obtain the desired result.

2.3 The maximum principle

Theorem 3 (Maximum principle) A non-constant harmonic function can-
not have an interior maximum or minimum.

Proof. By the Poisson representation, a harmonic function’s value at a point is
the average of its values on any circle about that point.

The proof of the following useful theorem illustrates the typical use of the
Poisson representation and the maximum principle.

Theorem 4 Suppose a harmonic function u is bounded in a punctured disk.
Then the singularity is removable, i.e. there is a function harmonic in the
entire unit disk that agrees with w on the punctured disk.
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Remark. The function log(1/r) is harmonic in the punctured disk, so the bound-
edness hypothesis is not superfluous.

Proof. Without loss of generality we can assume that the disk in question is
the unit disk D. Let P be the punctured disk D — {0}. Let f be the harmonic
extension of the boundary values of u; let » = |z|. For each ¢ > 0, define

1
dc(2) =u(z) — f(2) + €elog (;)
Then ¢, is harmonic in the punctured disk. As r — 1 we have ¢. — 0, by
Theorem 2. Because u is bounded, ¢ — oo as z — 0. By the maximum
principle, ¢.(z) > —1/m in the punctured disk, for each m; hence ¢.(z) > 0.
Now let € — 0; we find u(z) — f(z) > 0 in the punctured disk. Now define

Ye(z) = u(z) — f(z) — elog (%)

and repeat the argument with v, in place of ¢., and +1/m in place of —1/m.
We find u(z) — f(z) < 0 in the punctured disk. Combining the two results we
have u(z) = f(z) in the punctured disk. That completes the proof.

Remark. Another interesting theorem (which we do not prove here) about the
boundary behavior of a harmonic function is this: if ¢ has a step discontinuity,
then its harmonic extension behaves like a helicoid asymptotically near the
discontinuity, i.e. it has radial limits along rays approaching the boundary
point.

2.4 Poisson’s formula in the upper half-plane

We can express the Poisson formula over the upper half plane H™T, instead
of over the disk. That can be useful when we want to study the boundary
behavior of a minimal surface; then the boundary is parametrized along the
real axis instead of a circle. The only book in which I have seen this discussed
is [1], p. 145, where it is done for n dimensions instead of just n = 2. Here we
take a simpler, complex-variables approach.

Lemma 3 Let U be a function harmonic in the open upper half plane, contin-
wous in the closed upper half plane, and bounded at infinity. Let

1
K(z,2) =1
(2,2) = Im ——
Then for Im (z) > 0 we have
1 o0
Uz) = — / U(z)K(x,z) dx.
™ — 0o

Moreover if U is C%* on the real axis for some p > 0, then the formula is valid
for real z too.
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Remark. Note that the constant in front of the integral is 1/7, not 1/27. Axler’s
formula (op. cit.) is
Y
K(z,z) =cg——F5——
)= ey e
where z = p+iq, and ¢y is given (p. 144) as 2/nV (B,,) with n = 2, which works
out to 1/m, making our answer and Axler’s agree.

Proof. Let V(z) be the conjugate harmonic function of U, and let F(z) =
U(z)+1iV(z), so F is complex analytic where U is harmonic. We first establish
the theorem in case F(z) = F(z). Then we have, for z in the upper half plane,
and R larger than |z|,

1 [ F) 1 [T F(Re™) _ .,
— d — — 72 Rie* dO
2wt J_pax — 2 v 2mi J, Re' —z e

F(z) =
by Cauchy’s integral formula. Since Z is in the lower half plane, we have

1 [*F 1 i ,
0 = — / (I), dr + — / F(Re ), e do
2mi J_pr— 2 2mi J, Re® —z

Subtracting the two equations we get

Flz) = —— RF(;E)( LI 1_>d:c

211 r—z T—2Z

Reze . 0 ) . 0
/Rew Rie" df — /Rew sze db

We will show in a moment that the 0 integrals disappear in the limit as R — oo.
That leaves us with

1 e . .
F(z) = 5 7OO(U(9C) +1iV(2))2i Im — dx
Taking real parts we have
U(z) = L U(z)K(x,2) dx
oo ) ’

as claimed. Now we return to show that the 6 integrals disappear as R — oo.
We have

10 1(0
F(Re ik g / FREC) b g
0 Re

iy . 1
F(Re" — Rie' do
/0 (e )<R619—z Rew ) e
z—Zz

F(Re")Rie' . : de
/0 (Re™) Rie (RQeW’ —2Re* Re (z) + 22)
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O(1/R) /0 ! F(Re")ie® db

= O(l/R)/ ie'? df since F is bounded
0
= O(/R)

as claimed. That completes the proof under the assumption F(z) = F(Z).

Now suppose that U is harmonic in some neighborhood of 0, as well as in
the upper half plane. Then F(z) = > 7 ja,z™ in some neighborhood of the
origin, and in case all the a,, are real, we have F(z) = F(z), which then holds
in the upper half plane by real-analytic continuation. So the theorem applies
in this case. More generally we have F'(z) = Y (a, + ib,)z" and if we define
G(z) = > anz"™ and H(z) = > b,z™ then F = G 4 iH and the theorem holds
for G and for H separately, and hence for F":

F(z) = G(z)+iH(z)
_ i/ G(z) dx dr+ H(x)dx s
2m ) x— 2 2m ) T — %
_ L/ F(z)dx i
2m ) x— 2

Finally we must eliminate the assumption that U is harmonic in a neigh-
borhood of zero. Let U,(z) = U(z + 1/n). Then each U, is harmonic in a
neighborhood of zero, so the theorem applies to it:

o0
Un(z) = i/ Un(2)K (2, ) da.
21 J_ o

Since the U,, converge to U by the continuity of U, we can pass the limit under
the integral sign by the bounded convergence theorem. That completes the
proof of the lemma.
Remark. This is essentially the first proof of the Poisson formula from [21],
transplanted from the disk to the upper half plane. In the disk, the complex
conjugate has to be replaced by the “reflection” of a point in the unit circle,
which is less intuitive.

The following lemma expresses the complex derivative F. in terms of the
boundary values of a harmonic function. In particular the normal derivative F},
is thus expressed in terms of the boundary values.

Lemma 4 Let F' be harmonic in the open upper half-plane, continuous in the
closed upper half plane, C? on the real line, and bounded at infinity. Then for
Im (z) > 0 we have

-1 [ F(x)

F() = — [ 2% 4
() 270 J_ oo (. — 2)? *

_ L/WFI_@)M

27 J_ o T — 2
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Proof. By Lemma 3 (applied separately to the real and imaginary parts of F)

we have
F(z) = —1 I F(x)d
z) = o | m ) dx

~ LM Re < - )F(:z:)d:z:

27 J_ & T—z

r—z

Differentiating with respect to z we have (for z in the upper half plane)

) = L4 OO( - >F(:c)d:c

2rndz J_ o \z—2

Since Im (z) > 0, we can push the derivative through the integral sign. Then

F.(z) = L[~ d ( - )F(:v)d:v

21 J_so dz \x — 2

- i/”ﬂdw

271 ) _ oo (x — 2)2

proving the first formula of the lemma. The second formula of the lemma is
obtained by integration by parts, as follows:

_ R
F.(z) = —1 lim / _F@) dx
271 R—oo J_p (x — 2)?
R —

= lim _Fw(x) dr — L lim F(R) — F(-R)

R—oo | _pT—2 21 R0 \R—2 —R—2z
1 > F

27 J_ o x — 2

The second limit term vanishes since F' is bounded at infinity, by hypothesis.

2.5 Poisson formula for the half-plane, reprise

Since the unit disk and the upper half plane are conformally equivalent, one
could either use the above proof, plus a linear fractional transformation, to
prove the Poisson formula for the disk, or one could go the other way, and
derive the Poisson formula for the half-plane from the Poisson formula for the
disk. This is a good exercise, and since the spirit of these lectures is to carry
out all the details, we will give this proof too.

Linear fractional transformations are conformal maps of the form

az+b

— .
i cz+d

They take lines or circles into lines or circles. (Another good exercise.) Hence if
we want a linear fractional transformation that takes the unit disk to the upper
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half plane, we choose a, b, ¢, and d so that i goes to oo, —i goes to 0, and 1
goes to 1. Then the unit circle will go to the real line. The transformation in
question is

iz —1

—z+4i
It takes the disk onto the upper half plane, not the lower half plane, since 0 goes
to the interior point i of the upper half plane. One can also calculate directly
to show that this map takes S' onto the real line:

m 1. — Im (iz — 1')(—27— z.)
—z41 (—z41i)(-z—1)
1
1 o . .
= ————Tm (—izZ+1) since z + Z is real
2+ iP
= 0 for z on S!, since then 2z = 1.

The inverse of this transformation is z = (iw+1)/(w+1). (To invert a linear
fractional transformation, we invert the matrix of its coefficients.) Let w be in
the upper half plane and let F' : R — R be bounded. Let z = (iw + 1)/(w + 1)
be in the unit disk and let f(z) = F(w) = f((iz—1)/(—z +1)) and let u be the
harmonic extension of f in the unit disk. Then the harmonic extension U of F
into the upper half plane is given by U(w) = u(z). By the Poisson formula we
have, with ¢ = e?%,

w(z) = - 2ﬁu(C)Regjz

2 Jo

1 ¢+ 2z d¢

In the integral we shall make the substitution ¢ = (i§ +1)/(£ +7) to transform
the variable ¢, which ranges over S!, to & ranging over the real axis. We have
(E+1i)— i€+ 1)
¢ = d
‘ v ¢
—2d¢
(€ +1i)?
—2d¢
dg (EDk
; i(ig+1)
i¢ o
2d¢

&+1

Substituting z = (iw + 1)/(w + i) as well as making the given substitution for
¢ we have

de
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o €1 | dwtl
- €+1 w1 2
e T e @)

Simplifying the first compound fraction we have

g [ Cw+1  2de
U = goRe [ UOZS @y

- L Y R
- 27TRe/OO U(§)_(§_w €2+1)d§
= gRe [ UOT - ke [ U5

The second integral is zero, since it is equal to the limit as R — oo of the contour
integral of the analytic function (U +iV )w/(w?+1) around the boundary of the
upper half-disk of radius R (where V is the harmonic conjugate of U). Hence

Ulw) = 2—Re /OOU(g)zLdg

z{—w

L [Tt

- %/ U(&)Img_iwds

That is the correct form for the Poisson kernel on the upper half-plane, as
derived in the lemma above, and now re-derived from the Poisson kernel on the
disk by the use of a linear fractional transformation.

2.6 Harmonic functions and Dirichlet’s integral

Another consequence of the Poisson representation is

Theorem 5 [Harnack’s theorem] Suppose the sequence of harmonic functions
Uy, converges uniformly in the closed unit disk D to a limit w. Then w is har-
monic and the derivatives of u, converge uniformly in compact subdomains to
the deriwatives of u.

Proof. First, for simplicity, assume that the limit function u is continuous.

2
un(z)zi/o un (") R, gi_ dp

where ¢ = e'? and z = re’?. Passing the limit through the integral sign, which
is justified since u is continuous. we obtain

1 27 <+Z

o u(e’)R Q— dp

u(z) =
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so u is harmonic. Differentiating the first equation, and using the fact that for
analytic F', we have F, = (d/dz) Re F, we obtain

d 1 [ on d 4z
n - - n Wy — d
dz" () 27 Jo une )dzC—z
= e n g 7d
2w Jy i

Since u,, converges uniformly on the boundary to u, we can take the limit under
the integral sign, obtaining

o d L[ ey 26
~du
- dz

Now, if the limit function u is not assumed to be continuous on the boundary,
we restrict the u,, and u to the disk of radius R. Then wu is continuous on the
boundary (the circle of radius R) and hence u is harmonic and the derivatives
of u,, converge to those of u on the disk of radius R. That completes the proof.

Since the derivatives of a harmonic function are themselves harmonic, Har-
nack’s theorem applies as well to the higher derivatives, not just the first deriva-
tives.

The solution u = ¥[y] is known as the harmonic extension of the boundary
values ¢. We now consider the map ¥ as a map from one function space to
another. We have just observed that ¥ maps C°(S!) into C°(D), and it can be
shown that ¥ is continuous. In general ¥ does not map C"(S!) into C™(D).
We “lose one derivative”. If we use the Lipschitz-condition spaces C"™%, we find
better behavior: ¥ does map C™% continuously into C™¢. This is the theorem
of Korn and Privalov. You can find a proof in [15], page 17. But if we stick to
C™ spaces, we need one higher derivative on the boundary: if we want to know
that V¢ is small, for example, we would need to estimate fgg.

Definition 2 Let f : D — R. Dirichlet’s integral is given by
1 2
Blf) = 5 [ IVfPdedy
D
1 2 2
= 5‘/D%;“I—i-fydgcdy

Lemma 5 [Semicontinuity of E] Suppose the sequence of harmonic functions
U, converges (uniformly in compact subdomains of the unit disk D) to a limit
u. Then

Elu] < liminf Elu,].

Proof. By Harnack’s theorem, Vu,, converges on compact subsets to Vu. If we
integrate |Vu,|? over the disk of radius R < 1, we can take the limit under the
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integral sign. Let Fr[u] denote (half of) this integral. Then

lim Eglu,] = Erlul.

n—oo

Fix € > 0. We must show that for n sufficiently large we have E[u,] > E[u] —e.
Pick R so large that Er[u] > E[u] —€/2. Pick k so large that for n > k we have
|Er[un] — Erlu]| < €/2. Then

Elup] — E[u] = Elun] — Eglun] + Er[un] — Er[u] + Er[u] — E[u]
Since Eluy] — Erlu,] > 0 we have
Elun) = Elu] > Eglus] = Eglu] + Eg[u] - Elu]
The right hand side has absolute value bounded by e:
|ERr[un] — Erlul + Erlu] — Elu]| < |Er[un] — Eg[u]| + |Er[u] — Elull
< €/2+¢/2=c¢
Hence
Elu,) — Elu] > —e¢
as required. That completes the proof.

Theorem 6 [Harmonic functions minimize Dirichlet’s integral] Let f be in the
Sobolev space W12 of the closed unit disk, continuous except possibly at finitely
many boundary points, and bounded. Let u be harmonic in the open unit disk
with the same boundary values as f. Then E[u] < E[f]. Suppose that E[f] is a
minimum among functions from D to R with the same boundary values. Then
f is harmonic.

Proof. Let Let ¢ = f —u so f = u+ ¢ with v harmonic. Suppose for the
moment that f is C? in the closed disk, so that Green’s theorem is applicable
where we need it below. Then calculate:

Bl =Bl = 5 [ e+ o)Vt o)~ Vul dedy
= /VuV¢+%|Vu|2d:1:dy
D

27
1
= / ou,. di + / pAu + §|V¢|2 dxdy by Green’s theorem
0 D

1
5 / |Vo|? drdy since ¢ = 0 on the boundary and Au =0
D

> 0

On the other hand, since we have assumed F|[f] is a minimum, we have E[f] —
Elu] < 0. Hence [, |V@§|*dxdy = 0. Since the integrand is non-negative,
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we have V¢ = 0 almost everywhere, so ¢ is constant. But since ¢ is zero
on the boundary, and continuous at all but finitely many boundary points, ¢ is
identically zero. That completes the proof in case Green’s theorem is applicable,
in particular in case f is C2.

To prove the theorem for more general f, let u,, be a sequence of harmonic
polynomials converging to u, defined by the truncated Fourier series of u, and
let ¢, = f — u,. Repeat the above calculation, using w,, instead of u. Then
Green’s theorem is applicable to fD VuVe, since uis C?. (It doesn’t matter that
¢ is not C? since we don’t need derivatives of ¢ in this application of Green’s
theorem.) We conclude that E[f] — Efu,] > 0. That is, E[u,] < E[f] Taking
the limit as n — oo, we find liminf Efu,] < E[f]. Applying the semicontinuity
of E (proved in the previous lemma) we have E[u] < E[f] as desired. That
completes the proof.
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Chapter 3

Harmonic Surfaces

3.1 Isothermal coordinates

If u, - uy = 0 and |u}| = |u?| then we say u is given in isothermal coordinates.
These are also called “conformal coordinates”. There is a general theorem that
any C' regular surface has an isothermal parametrization. But, we need the
existence of isothermal parameters for a minimal surface, which is allowed to
have isolated non-regular points. Luckily, there is an explicit construction of
(local) isothermal parameters for minimal surfaces. This theorem is attributed
to Riemann and Beltrami in Rado’s book.

Theorem 7 (Isothermal parameters) A sufficiently small portion of a C*
minimal surface admits an isothermal parametrization.

Proof. In a sufficiently small neighborhood, we can orient the axes so that
the surface can be written in non-parametric form, Z = f(x,y). We write X
for the vector (z,y,7). (Since z = x + iy we use upper-case Z for the third
coordinate.) Then f satisfies the non-parametric minimal surface equation. We
claim that N x dX is a complete differential. That means that for some (vector)
function w, we have dw = N x dX. From calculus we know that Pdz + Qdy is
a complete differential if and only if P, = Q.. Here we have dX = (dx,dy,dZ)
and dZ = f.dx + f,dy, and with W2 =1+ f2 + f; we have
_fw

N = ~fy
1

==

—fydZ — dy

dr + frdZ

—fzdy + fydx

_fy(fac dx+fydy) —dy
dz + fo(fzdx + fy dy)
—fz dﬂ?"‘fydy

N xdX =

==

==

33
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L[ fufede — (14 £7)dy
W (1+fx2)dx+fzfydy

= do | (L+ /W | +dy | fufy
—fu/W fy

Now we apply the cross-wise differentiation test. Let

T = (1+ f}) fow = 2fafyfuy + L+ D) fyy

so that 7' = 0 if and only if the surface is minimal. After a few lines of compu-
tation we find

(Fefy) /W)y = (—(L+ £2)/ W) o [t
(1+fx2)/W)y_(fxfy/W)x = W _fy
(fy /W)y = (= fa/W)a 1

_ % N

Hence N x dX is a complete differential if and only if 7" = 0, which holds if and
only if the surface is minimal. Here we only need one direction: since we have
assumed u is minimal, N x dX is a complete differential. Therefore for some
function w we have dw = N x dX. Introduce a = z, 8 = wi(z,y), the first
component of w. Then as computed above, we have

4 =~ (fyfad + (1+ £2)dy) (31)

Since B, = (1 + f2)/W > 0, the map ¢ taking (z,y) — (a,f) is a local
diffeomorphism ¢. It is C? since X is C2. Let 9 be the inverse of ¢, given by

r=o,y=h(a,B)

for some C? function h. Since Di(a, B) = [Dp(z,y)] ™!, we have
( 10 ) B ( 10 >‘1
Yo Yp Ba By

- <}ﬂﬁ@,?ma>

In (3.1) we have calculated the entries on the right hand side. Putting in these
values we have

_ Jyle
Ya = — 2
1+fy

B w
VeI



3.2. UNIFORMIZATION

35

We claim that « and (8 are local isothermal parameters. We have to show that

Xa-ngoanngng.

We have
Xoo + Xyya
(17 Oa fx)xﬂé + (07 15 fy)ya
Jylz
1,0, fz) — (0,1, .
Xexg + Xyyp
(07 15 fy)yﬁ

w
(0,1, fy)?fg
Yy

w
fym (141

since xg = 0

fofe W

o L+ 214 f2

0

W2

1+ f7

L+ o+ 1y
L+ f]

(fyfe)®  2(fyfe)®
1+ f2 L+ f2
2
1+ ) - L]
A+ )+ 1) = (fufy)?
14 f2
L+ 24}
L+ f2
X3 |

1+ f2)+

Thus we have shown X, - X5 = 0 and X7 = X3. That completes the proof.

3.2 Uniformization

The main theorem in this section is the existence of global isothermal coordi-
nates for minimal surfaces. The proof will only be sketched. For details see [7],

chapters 2 and 5.

Theorem 8 If u is a minimal surface then there exists a reparametrization @
of w which is in isothermal coordinates.

Proof Sketch. We have already shown the existence of local isothermal coordi-
nates. We can therefore find a triangulation of the surface u and local isother-
mal coordinates defined in each triangle of the triangulation. The problem is to
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“uniformize” these coordinates. The method involves the existence of a Green’s
function, or “dipole potential”, on the surface. One uses the local coordinates to
define the meaning of “harmonic”; namely, a function defined on the surface is
harmonic if it is harmonic when expressed as a function of the local isothermal
coordinates. Now we can define the concept of a Green’s function: it is a func-
tion G(z,¢) which for fixed ¢ on the boundary is harmonic on the surface as a
function of z and is zero on the boundary. We will not explain the proof that G
exists. Once it is known to exist, then fix a point ¢ and let g(z) = G(z,(), and
g* the harmonic conjugate of g, and define F(z) = g(z) +ig*(z). Then F maps
the surface conformally onto the upper half plane. Since the upper half plane is
conformally equivalent to the unit disk, the surface can be mapped conformally
onto the unit disk, which is what we were trying to prove.

3.3 Minimal surfaces as harmonic conformal sur-
faces

Since the 1930’s, it has been customary to study minimal surfaces as harmonic
isothermal surfaces. Here is the basic theorem that justifies this practice.

Theorem 9 A surface in isothermal parameters is minimal if and only if it is
harmonic.

Proof. Suppose u is given in isothermal parameters. Then £ = G = W and
F =0, and the mean curvature H, which we proved is given by
_ LG+NE —-2MF

a 2W2

reduces to
L+N

2W
Recall that L = ugz, - N and N = uy, - N, where we have used N in a slightly
different font than N to minimize confusion, we have

H =

Au-N=2WH.

2 _

> =

The conformality conditions are wu
respect to z and y we find

u? and uzu, = 0. Differentiating with

UgUge = UylUyz
Uylyy =  UgUzy
Uggly + Uglyy = 0
UyyUgy + Uylzy = 0
Therefore
Auu, = 0

Auu, = 0.
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This means that Aw is a normal vector. Since NN is a unit vector, and we proved
that Auw - N = 2HW., it follows that

Au=2HWN.

Hence H is identically zero if and only if Aw is identically zero, which is what
we had to prove.

Theorem 10 A harmonic surface is minimal if and only if it is in isothermal
parameters.

Proof. Suppose Au = 0. If u is also in isothermal parameters then u is minimal
by the previous theorem. Suppose then that v is minimal; we must show u is
in isothermal parameters. The proof of this will be postponed until the section
on Dirichlet’s integral below.

Corollary 1 A harmonic surface u is minimal if and only if u? = 0.

Proof. Suppose u is harmonic. Then u, is complex analytic. Consider u? =
u, - u,. The real part is u2 — ug and the imaginary part is 2u, - u,. Thus the

parameters are isothermal if and only if u? = 0.

3.4 Some geometric corollaries

Here we draw some geometric consequences of the connection between minimal
surfaces and harmonic functions.

Theorem 11 A minimal surface lies in the convex hull of its boundary.

Proof. Let u be a minimal surface with boundary I'. (The boundary is not
required to be a Jordan curve or to be smooth.) The convex hull of T" is the
intersection of all the half-spaces containing I'. Let H be such a half-space; we
must show wu lies in H. Let P be the normal to the plane bounding H, so that
x-P >0if and only if « is in H. Then w - P is a harmonic function, defined in
the parameter domain D of u and negative or zero on the boundary. If u does
not lie in H then w(x) > 0 for some z in D; hence the maximum of v in D is
positive. By the maximum principle for harmonic functions, the maximum is
taken on at some boundary point, contradicting the hypothesis that - P <0
on the boundary.

Lemma 6 (Radd) Let u be a minimal surface bounded by a Jordan curve T,
and let P be a plane tangent to u at an interior point. Then plane P intersects
I" in at least four points.

Proof. Let @ be a unit normal to plane P. Then f(z) = u(z) - Q is a harmonic
function in the parameter domain D with Vf = 0 at the points where P is
tangent to u(z). The lemma thus reduces to the following statement about
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harmonic functions: if f is harmonic in D and continuous in the closure D, and
f(0) =V £(0) =0 then f has at least four boundary zeroes.

We first prove this fact under the assumption that f is not only harmonic
in D, but C? in the closure D. Since f is harmonic, it is the real part of some
complex-analytic F. In the vicinity of every point zy in the closure D of the
parameter domain, we have F(z) = c(z —29)" +O((z — 20)" T for some constant
¢, and some integer n. By the Heine-Borel theorem, we can cover D by a finite
number of such neighborhoods. In each neighborhood, the zero set of f is either
a Jordan arc, or a “star” that is diffeomorphic to the union of 2n Jordan arcs all
meeting at a point and disjoint except for that one point of intersection. Now
starting from a point zyp where u is tangent to P, we follow the zeroes of f.
There are four possible starting directions; in each direction, we continue along
the zero set of f, making an arbitrary choice at points were V f is zero. These
continued paths do not meet, by the maximum principle. Since there are only
finitely many neighborhoods and only finite branching in each neighborhood,
eventually each path must meet the boundary. That completes the proof under
the assumption that f is C2 up to the boundary.

If f is not C? up to the boundary, but is at least continuous on D, then let
D,, be compact sets exhausting the parameter domain D as n goes to infinity;
for example, take D,, to be the set of points whose distance to the boundary is at
least 1/n. Then the argument above allows us to extend the four “level curves”
where f is zero from the starting point zp to the boundary of D,,. They never
meet in D; but they might have infinite length and they might not converge to
a point as n increases. We have thus divided the open set D into four regions
Dy, ... Dy, meeting at zp, separated by piecewise real-analytic arcs A; (that is,
there are finitely many pieces of A; on each compact subset of D) that never
meet and eventually leave each compact subset of D.

Suppose, for proof by contradiction, that there are 3 or fewer zeroes of f on
the boundary. Let P, P>, and P3 be three points on 0D including all boundary
zeroes of f. Since f is continuous on D, for each € > 0 we can find § > 0 such
that |f(z)| > € for all z within § of the boundary except for those z within § of
some P;. Each of the four piecewise analytic arcs A; thus has to approach one of
the P;, since when n is large enough, the exterior of D,, is within € of 9D. Since
there are fewer than four of the P;, two of the arcs A; must converge to the
same P;, which by re-indexing we may assume is P;. Possibly more than two of
the arcs A; converge to Pi; if so choose just two, which we may call A; and As,.
Consider the set B bounded by Ay, Az, and P;. The harmonic function f is zero
on the boundary but not identically zero on B. Since it is continuous on D it is
also continuous on B. (We haven’t proved that the boundary of B is a Jordan
curve, but that does not matter.) A continuous function on the compact set B
must have a maximum and a minimum; by the maximum principle for harmonic
functions, these cannot be in the interior; hence the maximum and minimum of
f both occur on the boundary of B. But f vanishes on the boundary; hence f
is identically zero on B. But that contradicts the hypothesis that it has a zero
of order n at zg. That completes the proof.
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Lemma 7 [Monodromy| Let D and E be open sets bounded by Jordan curves
0D and OFE. Suppose the closure E is convex. Let f map D continuously and
locally one-to-one into E, and suppose f maps 0D one-to-one onto OF. Then
f is a homeomorphism from D to E.

Remark. Radé states this theorem without the hypothesis that E is convex, and
without proof, referring to an out-of-print topology textbook. I was not able
to find either a statement or proof of the theorem either in 1968 when I first
read Rado, or at this writing in December 2010, so I supplied the following one,
which works when E is convex; that case is sufficient for Radé’s applications.
Of course, we could appeal to the Riemann mapping theorem to know that the
interior of every Jordan curve is homeomorphic to a convex set (the unit disk);
that would remove the hypothesis of convexity, but we get the stated result
without the Riemann mapping theorem. Maybe one can prove more simply
that the interior of every Jordan curve is homeomorphic to a convex set, but
for applications to minimal surfaces, we need only the convex case.

Proof. The consequence of convexity that we use is that if p is an interior point
of E and ¢ is a boundary point then there is a line segment connecting p and
q that lies in F except for its endpoint on the boundary. The definition of
convexity gives us a line segment L connecting p and ¢ that lies in E; we must
show that L actually lies in F except for the boundary endpoint. Since p is an
interior point, there is a neighborhood U of p contained in E. Line segment L,
extended, divides U into two halves. Pick points r; and 79 in these two halves,
and lying on the perpendicular K to L at p. Then by convexity, r; is connected
to @ by a line segment L; lying in £. Consider the triangular region bounded
by L1, Lo, and K. Its sides lie in the interior of F. Since E is a Jordan region,
the entire interior of this triangle lies in E. (Here we use the Jordan curve
theorem.) Hence L lies in F, except for its endpoint at gq.

The hypothesis tells us that f is a covering map; that is, if f(z) = p and
7w is a path in F through p, then 7 can be “lifted” locally to a path p in D
through z, such that f(p(t)) = m(t) for some interval of ¢ values containing 0,
where w(0) = p and p(0) = z. In particular f takes D onto E, not just into, as
a path from some point in the range of f to any other interior point of E can
be lifted.

We claim that paths can be lifted, not only in the interior, but up to the
boundary as well. Let 7 be a path in E with p = 7(1) on the boundary and 7 (t)
in the interior for 0 <t < 1, and let z be a point on the boundary of D with
f(2) = p,and let ¢ = 7(0). Let a be a path lifting 7; then «(t) is defined at least
for 0 <t < 1. The set {a(t) : 0 < ¢t < 1} in D has at least one accumulation
point w in D, since D is compact and the set in question is infinite. Let w
be any such accumulation point. By the continuity of f, f(w) is the limit of
a sequence of points m(t,) = f(a(t,), where t, — 1; but m(t,) converges to
(1) = p. Hence f(w) = p. Since [ takes interior points to interior points, w is
a point on the boundary of D. Since f is one-to-one on the boundary, we have
w = f~1(p). Since w was an arbitrary accumulation point of values of a(t) for
t < 1, there is exactly one such accumulation point. That implies that if we
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define a(1) = w, the function « is then continuous on [0, 1], and lifts the path
7 all the way to the boundary. Moreover, the argument also shows that every
lifting of 7 terminates in the same boundary point w.

Fix a point p in E and a boundary point ¢ of . Then by convexity, there
is a linear path 7 from p to ¢ in E, i.e. a path whose image in F is a line, and
which is linear as a function of its arc-length parameter ¢. Then for sufficiently
small angles 6, there is a linear path m(6,t) (parametrized by t) emanating from
p making an angle  to 7 at p. For each 6, there is a least ¢ value e(6) for which
7(0,t) lies on OF; e(t) is the arc length of the path 7(¢) from p to the boundary.
The function e is continuous because OF is a Jordan curve. The path 7(t,6)
is continuous in ¢ and 6, because it is just a line. Let «(6,t) be a lifting of
7(0,t), where a(,0) = w is independent of §. Then «(0,e(0) lies on ID and
so f(a(f,e())) lies on OF, and equals w(f, e(f)). Since f is one-to-one on the
boundary, its inverse function f—1 is defined (and continuous) on OF. Hence

a(0,e(0)) = £~ (r(0,e(0))
is continuous as a function of 8. Define
h(6,t) := a(f,t/e(t)).

Then h is defined on some rectangle [—b,b] x [0, 1], and is

(a) continuous in (6,t) for t < 1,

(b) continuous in @ for each fixed ¢, and

(¢) continuous in @ for t = 1.

Note that we have not proved h is continuous in the closed rectangle, and
that appears difficult to prove, but we are able to proceed without proving it.

Suppose f is not one-to-one. Then there are two distinct interior points z;
and zy with f(z1) = f(z2) = p. Let 7 be a linear path from p to the boundary
of E, so p =m(0) and ¢ = w(1), with ¢ on OF. Then there are two liftings a;
of m with «;(0) = 2z; and, since f is one-to-one on the boundary and f(a1(1) =
f(az(1)) = ¢, we have ay(1) = az(1). Define w = a3(1) = az(1). Since f is
locally one-to-one at interior points, the set of ¢ < 1 for which a4(t) = az(t)
is open; but by continuity it is also closed. Since it does not include ¢ = 0, it
must be empty. Therefore we do not have a1 (t) = as(t) for any ¢t < 1. On the
other hand, for ¢ sufficiently near 1, both paths «;(t) enter the range of «(6,t)
defined above. Hence, for t sufficiently near 1, there exist 61 and 65 such that
a;(t) = a(f;,t). We have 6, # 0 since ay(t) # as(t). Applying f to both sides
of the equation «;(t) = «(6;,t) we have

flai®) = fla(6:(t))
On the left side, we have 7 (t) for ¢ = 1 and ¢ = 2. Hence the right-hand sides
are also equal, and we have

fla(01()) = f(a(6:2(1))

But the left-hand side lies on the path 7(61,-), while the right-hand side lies
on the path m(f,-). Since 6, # 63, these two paths do not intersect. That
completes the proof.
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Theorem 12 (Radd) Let T’ be a Jordan curve whose projection on a plane
Q is a simply covered convex curve, i.e., the projection map is one-to-one on
I'. Then any minimal surface bounded by T' can be expressed in nonparametric
form, Z = f(X,Y), where X and Y are coordinates in the plane Q.

Proof. Let u be a minimal surface bounded by I'. The projection I'* of I" on the
XY plane is a convex Jordan curve: it is one-one since (as a map from S* to the
XY-plane) it is the composition of two one-one maps, I and the projection, and
it is convex by hypothesis. Let P be a plane perpendicular to the XY plane;
then P meets I'* in at most two points, because I'* is convex; and since the
projection is one-one, P meets I' in at most two points. Hence, by Lemma 6, P
is not tangent to u. That is, u has no vertical tangents. Now let w = u(z) be
a point on the surface, projecting onto w* = (X,Y’). By the inverse function
theorem, we can find a neighborhood U of (X,Y) and a function f defined in
U parametrizing the surface in a neighborhood of (X,Y). In particular there is
a neighborhood V' of Z such that u(v) is a subset of f(U).

Let D,, be compact sets exhausting the parameter domain D as n goes to
infinity; for example, take D,, to be the set of points at least 1/n from the
boundary of D. Then by the Heine-Borel theorem, we can find a finite number
of neighborhoods V; covering D,,, and a finite number of neighborhoods U; in
the XY plane and functions f;(X,Y) parametrizing u(V;). If V; and V; overlap
then f; and f; agree on the overlap, even if the V; and V; correspond to different
n and hence a different application of Heine-Borel, since u(z) = f;(X,Y’) where
(X,Y) = u(z)*, and similarly u(z) = f;(X,Y). Hence the union of the f; for
all n define a function f such that, if u(z) projects to (X,Y), then f(X,Y) =
u(z). Tt only remains to show that every point (X,Y’) in the interior of T'* is
the projection of some wu(z). The function (z,y) — (X,Y), or in other words
(*u,2u), is continuous, locally one-to-one, and on D and one-to-one on the
boundary. By Lemma 7, it is a homeomorphism from D to the interior of I'*.
Then every point (X,Y) in the interior of I'* arises uniquely as the projection
of u(z) for some z. That completes the proof.

Theorem 13 Let D be an open set in the plane bounded by a Jordan curve C.
Let ¢ be a continuous real-valued function defined on C'. Then there is at most
one solution f of the nonparametric minimal surface equation over D taking
boundary values .

Proof sketch. Let f and g be two solutions of the nonparametric minimal surface
equation in D, continuous in D and equal on the boundary. Let h = f — g.
Then h vanishes on the boundary. One can show that h satisfies a linear elliptic
differential equation. Since the maximum principle holds for elliptic differential
equations, the theorem follows.

Theorem 14 (Radd) Let T be a Jordan curve whose projection on a plane Q
18 a simply covered convex curve, i.e., the projection map is one-to-one on I'.
Then I' bounds at most one minimal surface defined in the unit disk.
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Proof. By the previous theorem, any such minimal surface can be expressed in
the form Z = f(X,Y). Then the uniqueness theorem for the non-parametric
minimal surface equation implies the stated result.

Remarks. These results of Radé and their proofs amply illustrate the way
in which many different branches of mathematics are used in minimal surface
theory. In this section we have used complex analysis, the theory of harmonic
functions, topology, and the theory of partial differential equations.

3.5 The Weierstrass representation

Start with a minimal surface v in harmonic isothermal parameters. Then u,
is complex analytic. That is, each of its three components is complex analytic.
The minimal surface equation says that u? = 0. That means that the three
components of u, are complex analytic functions ¢; such that ¢3 4+ ¢3 + ¢3 = 0,
and conversely, any such triple of analytic functions can be integrated with
respect to z to yield a minimal surface. This establishes an important and
fundamental connection between minimal surfaces and analytic function theory.

Enneper and Weierstrass independently observed that such triples of func-
tions can be written in terms of two analytic functions. Given such a triple, in
which none of the ¢; is identically zero, the equation ¢ + ¢3 + ¢35 = 0 implies

(1 — i) (d1 + i) = — 3

which implies that ¢ — i¢2 is not identically zero. Define

f(z) = ¢1—id2)

_ 93

Then neither f nor ¢ is identically zero, and they are both analytic except
possibly at zeroes of ¢3. It follows that

b = U1
02 = S(/+19)
s = fg

Conversely, if f and g are given analytic functions, then ¢; as defined by these
equations will satisfy ¢? + ¢3 + ¢3 = 0. We have proved:

Theorem 15 (Enneper-Weierstrass Representation) Let u be a minimal
surface. Define f(z) = tu, —i%u,, and g(z) = 3u,/f(z). Then we have

s/ f—rfg*dz
u(z)=Re | £ [f+ fg*dz
[ fgdz



3.6. BRANCH POINTS 43

To put the matter equivalently, we have

5(f = fg%)
Uz = %(f + f92
fg

This is a wonderful theorem, because it enables us to produce an example of
a minimal surface from any pair of analytic functions f and g, and moreover to
draw pictures of them whenever we can actually compute the integrals involved.

It is also a wonderful theorem, because it enables us to study complicated
questions about minimal surfaces by writing the (unspecified) minimal surface
in Weierstrass representation and reasoning about f and g.

3.6 Branch points

Definition 3 The minimal surface v has a branch point at z if uy = uy, = 0
at z.

That is, the branch points are the points of non-regularity of u. In case w is
harmonic, we can equally well describe the branch points as the places where
u, vanishes.

What do branch points imply about f and g in the Weierstrass representa-
tion? First note that f is always analytic, but g can be meromorphic. Since fg?
is also analytic, if ¢ does have poles, they are matched by zeroes of f of at least
half the order of the zero of g. For the third component of u, to be zero, both f
and g must vanish, and for the first component also to be zero, fg? must vanish
too. Therefore,the branch points of u are the simultaneous zeroes of f and fg>.

If the surface u has a branch point at z = a, we will have f(z) = c¢(z —a)™ +
O((z — a)™*1) for some m. This number m is called the order of the branch
point (assuming ¢ # 0). If the branch point occurs on the boundary, m will
have to be even for the boundary to be taken on monotonically.

We can simply put f(z) = 2™ and g(z) = z into the Weierstrass representa-
tion to produce examples of minimal surfaces with branch points.

If g(z — a) = cz¥ + O(z**! (with ¢ # 0), then k is called the index of the
branch point. We can also use the Weierstrass representation to draw minimal
surfaces with any desired index.

Branch points have been important in almost all work on minimal surfaces
since the solution of Plateau’s problem seventy years ago. In particular, my
work in 2000-2001 depends on detailed analysis of one-parameter families of
surfaces, one member of which has a branch point.
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Chapter 4

Dirichlet’s Integral and
Plateau’s Problem

4.1 The Dirichlet Integral

Dirichlet’s integral can be considered for a surface as well as for a scalar function.

Definition 4 Dirichlet’s integral is given by

1
Eu] = §/D|Vu|2dardy

1
= §/Dui+u§dardy

The letter E stands for “energy”. We do not use D for “Dirichlet” because D
is needed for Frechet derivatives.
It is sometimes useful to express E[u] as an integral over S*:

Lemma 8 .
Eu] = —/ uu,.de.
2 Jo
Proof.
1
Elu] = —/Vu-Vudxdy
2Jp

= —/uAu—i—Vu-Vud:vdy since Au =0
D

A(u?) dx dy

S—

(u?),do

ol

I S S S N N 1

—

u,-db

ot
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The first thing to calculate is the Frechet derivative of E, that is, the first
variation. There are several interesting spaces in which we might try to calculate
this derivative. We first consider the effect of varying the parametrization. The
following theorem shows that, among all parametrizations of the same surface,
those parametrizations that minimize E are in isothermal parameters. This
theorem justifies restricting attention to harmonic surfaces, since if we find
a harmonic surface minimizing F, then it must be in isothermal parameters,
and hence minimal; and no other (possibly not harmonic) parametrization can
further decrease E.

We set

T =uz+t\Nx,y)
g =y+tu(z,y)
a(z,y) = u(Z,7)

where A\ and p are the real and imaginary parts of K = A + iu. The following
formula is valid without restricting A and p so that (A, p) is tangent to the
parameter domain at the boundary.

Theorem 16 (First variation of Dirichlet’s integral) The Frechet deriva-
tive of E[u] in the direction k = X\ +iu is given by

DEu](k) = /D(ui — ui)(/\w — ly) + 2uguy (Ay + pg) dedy
Proof. We calculate

Ela] = /D(ﬁi+ﬂ§)dxdy

/ (upZy + uygjgc)2 + (ug®y + uygy)Q dz dy
D

/ [ug (1 + tAs) + uytpie]® + [uathy + uy (1 + tuy,))? dz dy
D

Differentiating with respect to ¢ and then setting ¢t = 0 we find the formula
given in the theorem.

Now we restrict attention to C*% surfaces u with the same boundary T.
Then the functions A and p must be such that (A, p) is tangential to D on 9D.
In fact, as the following proof shows, it is enough if DE[u] = 0 when A and p
actually vanish on 9D.

Corollary 2 DE[u] = 0 if and only if u is in isothermal parameters.

Proof. (from [7], p. 112) Suppose DE[u] = 0. Let g be any C" function from
D to R, with Vg vanishing on S*. and let ¢ be a solution of Poisson’s equation
A¢ = gin D. Define A = ¢, and p = ¢,. Then X and p solve the differential
equations

Ae =ty = 0
g(x,y)

>
<
+
=
8

I
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and vanish on the boundary. It follows from the theorem that

/ (uf —ul)g(z,y) dz dy = 0.
D

Since g was arbitrary, it follows from the fundamental lemma of the calculus of
variations that u2 = u% Similarly, we can solve the differential equations

/\m - /147/ = f(xay)

by taking A¢ = f and A = ¢, i = —¢,. Then by the theorem we have
/umuyf(% y)dedy =

for all f. Hence by the fundamental lemma of the calculus of variations we have
ugty = 0. Thus u is in isothermal parameters.

4.2 Dirichlet’s integral and area

Dirichlet’s integral is much nicer to work with than area, since it doesn’t have
the ugly square root:

1

Elu] = 5/Dui—i-ufldgcdy

Alu] = / uZuZ — (uguy)? d dy
D

On the other hand, area is invariant under reparametrizations of the surface,
while Dirichlet’s integral is not.
We have the inequality
Alu] < E[u]

which follows from the algebraic inequality va2b? — c2 < (a® + b?)/2. Equality
holds in this algebraic inequality if and only if ¢ = 0. Similarly, A[u] = E[u] if
and only if the surface v is in isothermal parameters. Indeed, we have

Elu] — AJu] = /D %(ui +up) — yJuud — (uguy)? da dy

Since the integrand is continuous and nonnegative, if the integral is zero, then
the integrand must be identically zero.

For the following theorem, we need Lichtenstein’s theorem, that any C?
surface has an isothermal parametrization. This is the only place in the subject
where we really need this theorem (which we have not proved).

Theorem 17 Suppose u minimizes E[u] among harmonic surfaces bounded by
T'. Then u minimizes Alu] also, not only among harmonic surfaces but among
surfaces C? in D and spanning T.
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Proof. First we claim that if w minimizes Dirichlet’s integral among harmonic
surfaces bounded by T, it also minimizes Dirichlet’s integral among C? surfaces
bounded by I'. To prove this, suppose that u minimizes Dirichlet’s integral
among harmonic surfaces bounded by T', and let w be a C? surface bounded by
I'. Let ¢ be the harmonic extension of w. Then by Theorem 6, E[p] < Efw].
Note that Theorem 6 is stated for scalar functions, but it applies to vector
functions as well since if u = (u1,ug, us) then E[u] = E[ui] + Efus] + Flus]. By
the assumption that « minimizes Dirichlet’s integral among harmonic surfaces
bounded by T', we have E[u] < E[p]. Hence Elu] < E[w] as desired.

Since u minimizes F[u|, the first variation DFE[u] is zero and hence u is in

isothermal coordinates. Hence A[u] = F[u|. Suppose u does not minimize area.
Let v be another surface bounded by I' with A[v] < Afu] = E[u]. Let w be
an isothermal parametrizaton of v, so E[v] = A[v] < Alu] = E[u]; but this
contradicts the assumption that Ffu] is a minimum.
Remark: In [7], p. 116, a proof is given which avoids Lichtenstein’s theorem, by
using a class of piecewise continuous surfaces that includes polyhedra, proving
that polyhedra have isothermal parametrizations, and then letting v be the limit
of polyhedra, and using the lower semicontinuity of E. This is also not quite
simple.

4.3 Plateau’s Problem

A surface u defined and continuous in the closed unit disk D is said to span a
Jordan curve I, or to be bounded by I, if w restricted to 0D is a reparametriza-
tion of I'. That is, for some o mapping the unit circle monotonically to itself
we have u(z) = T'(a(z)) for z on dD.

Plateau’s problem is this: Given a Jordan curve I', find a minimal surface
spanning I', preferably an absolute minimum of area among surfaces spanning
I, and preferably without branch points.

The basic idea of the solution to Plateau’s problem is to find a surface
minimizing Dirichlet’s integral in the class S of harmonic surfaces spanning a
given Jordan curve I'. There are, however, many details. We give a sketch of
the proof.

The plan is to let d be the infimum of values Efu] for u in S, and then let
un, be a sequence of surfaces in S with E[u,| decreasing monotonically to d. If
we can arrange that S is a compact space, we can then pass to a convergent
subsequence, converging to a surface u. If we can show that F is continuous, or
even lower semicontinuous, we can conclude that E[u] = d, so u is an absolute
minimum of Dirichlet’s integral. Then in particular it is a critical point of E, so
it is in isothermal parameters. Being harmonic and isothermal, it is minimal.

With respect to this plan we note the following difficulties:

(1) It is not obvious that there is even one harmonic surface spanning T’
whose Dirichlet integral is finite.

(2) Tt is not obvious why the space S should be compact.
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(3) The condition of spanning T' is not closed under uniform convergence.
The limit surface u might be only weakly monotonic on S!, and might even
have “arcs of constancy”.

(4) Regularity will not be preserved in the limit. Even if all the wu, are
regular, the limit u,, might have branch points.

(5) The solution is certainly not unique as the problem is posed, and con-
vergence will not work right, because of the existence of the conformal group:
there is a three-parameter group of conformal transformations of D to D, and
one can always reparametrize a harmonic surface by a member of this group
without changing E[u].

These problems are solved as follows:

(1) We restrict to rectifiable curves, and show that in that case, there is
a harmonic surface with finite Dirichlet integral spanning I'. Afterwards, we
approximate any Jordan curve by a convergent sequence of rectifiable curves,
solve Plateau’s problem for each of these, and find a convergent subsequence.

(2) The key to compactness is the Courant-Lebesgue lemma, which says that
the boundary values of functions in S with Dirichlet integral bounded by M are
equicontinuous.?

(3) The Courant-Lebesgue lemma solves this too.

(4) This was not solved until the seventies, and for boundary branch points,
has been solved only under the assumption that I" is real-analytic.

(5) This is easily fixed by restricting S to surfaces satisfying a “three-point
condition”, in which three fixed points on S! are required to correspond to three
fixed points on I'.

In order to prove equicontinuity, we need a series of lemmas. Our argument
closely follows [7], pp. 102f}.

Lemma 9 Suppose u is a harmonic surface defined in an open set B, with
Dirichlet integral bounded by some number M. Let C, be a circle of radius p in
B, or the intersection of the circle with B if the circle does not lie entirely inside
B. For every positive § there exists p (depending on u) such that § < p < /8

and
C ° lz

P

where s is arc length on C, and

4M
0 = 5179

Let L, be the length of the image under u of C,. Then

2
L < 2me(9).

1Readers not familiar with the concept of equicontinuity and the related theorem of Arzela-
Ascoli will find them both clearly explained in Wikipedia.
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Proof. Since C,, lies in B, u is C' on C?, and we have

Vs
/ / u?ds < 2E[u] < 2M
) Cr

Let
p(r) = T/ u? ds
Cr

so the previous equation can be written

N
/ Mdr§2M
5

r

By the mean value theorem, for some p between ¢ and v/& we have

V5 V5
pr) o L
/5 —d p(p)/6 - d
= plp)(In Vs —1ng)

Using the definition of p(p) we have

Vs
/ Mdr—<p/ ugds)lln1
5 r c, 2 )

and since the left hand side is < 2M we have

1.1
(p/ uids)—ln—ﬁQM
c, 2 0

Dividing both sides by (p/2)In(1/§) we obtain

[ ias< 1AM _d0)
c, pIn(1/6) P

That proves the first claim of the lemma.
To prove the second claim, we have

L) = /Cw—d

Schwarz’s inequality says that ([ fgds)? < [|f|*ds [|g|*>ds. Applying this
with f = /u2 and g = 1 we have

L(p)?* = /Cugds/c ds
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< 2mp / u? ds (equality holds if C, is inside B)
Cp
< 2me(d)

as claimed. That completes the proof of the lemma.

Lemma 10 Let I' be a Jordan curve. For any positive o, there exists T > 0
such that, if P and Q are two points on I' not more than T apart, then the
diameter of one of the two arcs of I' determined by P and Q) does not exceed o.

Proof. For proof by contradiction, suppose there is a o > 0 such that 7 cannot
be found. In particular 7 = 1/n for n = 1,2, ... does not work; so there exist
points P, and @,, on I, not more than 1/n apart such that one of the two arcs
from P, to @, on I' has diameter at least 0. Choose a convergent subsequence
of the P, and a convergent subsequence of the corresponding @,,; renumbering
we may assume P, and @, both converge to a point P, while the diameter of
both arcs from P, to @, remain more than o. Because I' is one to one, the
pre-images s, and t, of P, and @, must converge to the same point ¢ (such
that P =T(t)). Let R,, = I'(r,) be a point with r,, between t,, and s,, and R,
at least 0/2 away from P. (If R,, cannot be found for all n, we are done.) But
r, also converges to t, so I'(r,,) converges to I'(t) = P, contradiction.?

Lemma 11 (Courant-Lebesgue) LetT be a Jordan curve and M a real num-
ber such that T' bounds some harmonic surface (defined in the unit disk) whose
Dirichlet integral is less than M. Let S be the set of surfaces continuous in the
closed unit disk, harmonic in the open unit disk, bounded by I', and satisfying
a three-point condition, whose Dirichlet integrals are less than or equal to M.
Then S, equipped with the C° metric, is compact.

Remark. These “surfaces” are not required to satisfy u, x u, # 0; that is, they
are just harmonic maps from the disk to R?.

Proof. We first prove that S is equicontinuous. We first show that it suffices
to prove that the boundary values of members of S are equicontinuous on S?'.
Indeed, if |f(x) — g(z)| < € on the boundary, then |f(x) — g(z)| < € in the
closed unit disk, since otherwise the harmonic vector f(x)— g(z) would have an
interior maximum or minimum, contradicting the maximum principle.?

Given o > 0, let 7 be as in the previous lemma. Then choose § > 0 so that,
with €(d) as in Lemma 9, we have

2me(8) < 72

2] do not know whether this lemma can be proved constructively, i.e. whether 7 can be
constructed from moduli of uniform continuity for I' and I'"1. It doesn’t much matter, since
the main proof below is not constructive, because there is no algorithm for picking a convergent
subsequence of an arbitrary sequence in a compact space. There is no known algorithm that
is guaranteed to find a solution of Plateau’s problem for a given boundary curve T".

3The maximum principle applies to harmonic vector functions as well as to scalar functions,
since if the vector function wu is identically zero on the boundary, then each component u; is
identically zero on the boundary, so by the scalar maximum principle each u; is identically
zero on the interior, so u is identical on the interior.
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Then, for any point p on the unit circle, there exists p between ¢ and /& such
that L% < 27e(d). The circle of radius p cuts out two arcs from the unit circle.
For § sufficiently small, the larger of these two arcs must contain two of the
three points in the three point condition; hence the image of the smaller arc on
the unit circle is the smaller arc of I'. Therefore, for points p and ¢ on the unit
circle with |p — ¢q| < 0, we have |u(p) — u(g)| < o. That is the equicontinuity
condition we had to prove.

Now to prove compactness, assume that u, is a sequence of members of S.
By the theorem of Arzela-Ascoli, there is a subsequence converging in the C°
norm. Re-indexing, we may suppose that u,, converges to a continuous function
u. By Harnack’s Theorem (Theorem (5) the limit function is also harmonic,
and by the lower semicontinuity of Dirichlet’s integral, proved in Lemma 5, we
have Efu] < liminfE(u,) < M, so u belongs to S. That completes the proof of
the lemma.

Lemma 12 Let I" be a rectifiable Jordan curve. Then I' bounds some harmonic
surface with finite Dirichlet integral.

Theorem 18 (Douglas-Rado) Let T’ be a rectifiable Jordan curve. Then T
bounds a harmonic surface (possibly with branch points) furnishing an abso-
lute minimum of Dirichlet’s integral and an absolute minimum of area among
harmonic surfaces bounded by I'.

Remarks. As we proved above, u then also minimizes area among surfaces C?
in the (interior of the) unit disk, and bounded by I'. The solution surface is
only proved to exist by contradiction; the proof does not provide an algorithm
to compute a solution.

Proof. By the previous lemma, I bounds some harmonic surface of finite Dirich-
let integral; let M be larger than that Dirichlet integral and let S be the class
of harmonic surfaces defined in the unit disk, bounded by I', and with Dirichlet
integral < M. By the Courant-Lebesgue Lemma, S is compact. Let m be the
infimum of all numbers F[u] for u in S. Let u, be a sequence of members of
S such that F(u,) is a decreasing sequence converging to m. By compactness
there exists a convergent subsequence of the u,; re-indexing, we may assume
that w,, converges to a harmonic surface u bounded by I'. By the lower semi-
continuity of Dirichlet’s integral we have E[u] < m. But m is the infimum of
numbers Efu] for u in S, so we also have m < E[u]. Hence E[u] = m. That
proves that u furnishes an absolute minimum of E' in the class S, and hence also
in the class of all harmonic surfaces bounded by I". Therefore the first variation
of Elu] is zero; hence u is in isothermal parameters; hence u is a minimal sur-
face. Since w is in isothermal parameters, we have A(u) = E(u). But for any
harmonic surface v bounded by T', we have A(v) > FE(v) > E(u) = A(u). Hence
u also furnishes an absolute minimum of area in this class.

There is, however, one more complication. We have to worry that perhaps
the limit surface u is not one to one on the boundary, which is required by the
definition of “bounded by I'”. That is proved as follows. Since u is a limit of
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surfaces bounded by I', the worst that can happen is that some interval on the
unit circle is mapped to the same point P. Then the harmonic vector u(z) — P
is identically zero on an arc of the unit circle. By Schwarz reflection it can be
extended to a harmonic function defined and harmonic in some neighborhood of
an arc of S, i.e. defined a bit outside the unit disk. Then z, as well as 2y exist
on the boundary. Since u is in isothermal coordinates we have u? = (1/r%)u?.
But since u is constant on a boundary arc, ug is identically zero there; hence
u, is also identically zero and hence wu, is identically zero, and u is constant,
contradiction. That completes the proof.

Remark. As we proved above, u also minimizes area among surfaces C? in the
(interior of the) unit disk, and bounded by T'.
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Chapter 5

The Second Variation of
Area

5.1 The second variation of area defined

Let u be any surface defined on some plane domain Q. We assume that u is C®
in the interior and at all but a finite number of “exceptional” boundary points,
and that the unit normal N extends in a C! fashion to the boundary, even at
the exceptional points. ' We do not assume that w is harmonic. The unit
normal N is defined in the interior and at all but a finite number of boundary
points. In [14] and [17], it is assumed that u is regular when calculating the
second variation of area. (Here “regular” means that g = det g;; is never zero,
ie. uiu% — uguy # 0.) We want to allow for the case when u is a branched
minimal surface, or possibly even a harmonic surface that is not regular. What
we assume instead of regularity is that the coefficients of the first, second, and
third fundamental forms of u are bounded in 2. That will follow, for example,
if uy, uy, Ny, and N, are bounded, as they certainly are for a branched minimal
surface.

The second variation of area is a bilinear functional D? A[u] operating on two
functions ¢ and v in the same “tangent space” that we used when calculating
the first variation of area. Given ¢ and 1), we construct a two-parameter family

u(s,t) = u+toN + st N

and consider the area A[u] as a function of ¢ and s. A calculation, similar to
the one we shall make below, shows that the second derivatives of A[a] with
respect to t and s are intrinsic, in the sense that they only depend on the
tangent vectors ¢ = u; - N and ¢ = ug - N (the derivatives are evaluated at
t = s = 0). Because of the intrinsic nature of these second derivatives, we can

1This condition holds, for example, if u is a minimal surface bounded by a polygonal
boundary curve.

55



56 CHAPTER 5. THE SECOND VARIATION OF AREA

define D2 A[u] as a bilinear form operating on tangent vectors ¢ and . This
form can be diagonalized. If it is positive definite, the minimal surface u is
called stable. In that case, u is a relative minimum of area in the C° topology.
However, u might be a relative minimum without being stable, if D?A[u] has a
non-trivial kernel; and of course D?A[u] will have a kernel when A[u] is not a
relative minimum. We write D?A[u](¢) = D?A[u](¢, ¢); the kernel consists of
those ¢ for which D2 A[u](¢) = 0.
We consider variations of the form

U =u+ toN.

These are called “normal variations” because they are in the direction of the
unit normal. One can more generally consider variations with a tangential
component, and shall do so at the end of this lecture.

The question arises as to what kind of function ¢ can be. In order to use the
fundamental lemma of the calculus of variations, C? is enough. But we need to
check that our formulas are valid for more general ¢. For example, one case of
interest to us is when ¢ = max(0,¢ o N) for some smooth function ¥ on the
unit sphere. In fact, our calculations will work if ¢ is in the Sobolev space of
functions in W12(Q) with generalized boundary values 0 on 95).2

We assume that ¢ is piecewise C* in the closed unit disk. That means that
the unit disk can be decomposed into a finite number of domains, separated by
a finite number of closed C'! arcs meeting at a finite number of points, such that
¢ is C® on each domain. That will cover the example, since the zero set of ¢)o N
is C! by the implicit function theorem, since N is C* up to the boundary.

The calculation given in Lecture 1 shows that

EG—F? = EG-F?+2t¢W?H

at every point where ¢ is C', that is, except on a finite number of C! arcs.
Hence the integration of this expression can still be performed, yielding the
standard formula for the first variation,

DAul(¢) = /D¢HWd:vdy

now established for piecewise C'! normal variations.

We write g;5, bij, and ¢;; for the coefficients of the first, second, and third
fundamental forms I, I, and I1] (see Lecture 1). H and K are the mean and
Gauss curvature (also defined in Lecture 1).

Lemma 13 ¢;; —2Hb;; + Kg;; = 0. This equation is sometimes written as an
equation between bilinear forms on the tangent space: 111 —2HIT + K1 = 0.

2For readers not familiar with the Sobolev spaces: W12(Q) is the space of real-valued
functions ¢ on €2 such that ¢ and its first derivatives are square-integrable on €. In general
WHP is the space of functions whose derivatives up to the k-th order have integrable p-th
powers. Note that [14] uses H instead of W.
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Proof. The principal curvatures k1 and ko are the eigenvalues of the Weingarten
map. The mean curvature H = %(Iil + ko) and the Gauss curvature K = K1k2
are the elementary symmetric functions of k1 and k2. Therefore k1 and ko are
roots of the polynomial

(x — k1) (x — ko) = 2° — 2H2 + K.

According to the Cayley-Hamilton theorem, the Weingarten map S satisfies this

same polynomial:
S? —2HS+ Kb =0

where 1D is the identity map on the tangent space. Applying this operator
equation to u; and then taking the inner product of the result with u; we
obtain

= S(ui)S(u;) — 2HS(ws)uj + Kuu; since S is self-adjoint
= ¢ij = 2Hbij + Kgi;

That completes the proof of the lemma.

5.2 The second variation of area for a normal
variation

This calculation is a fundamental result, vital for many results in minimal sur-
face theory. It is taken up in [17], section 102, page 95, where the general case
of a variation with both normal and tangential components is considered. How-
ever, only the result is given—Nitsche says, “By a direct but lengthy calculation
(which we omit owing to lack of space)”. This in a book of more than 560 pages.
More details can be found in [14], pp. 83-84, but it is still a bit difficult to follow
at equation (14). The following calculation proceeds along Hildebrandt’s lines,
but fills in more details.
We write u; for u, and us for u,. Then

u = u-+teN

ﬂi = u; + tgf)lN + t(le where u is Cl
This variation is only linear in ¢; we will show below that for v a minimal surface,
we get the same answer even if we include terms of order ¢2 or higher. For now,

let us complete the calculation for a linear variation. Hence, at points where ¢
is C! and which are not the exceptional points on the boundary,

Jij = Uy
(ui + (i N + ¢N;))(uj + t(d;N + ¢N;))
= gij — 2t¢bij + t*(i¢; + ¢*NiN;)
Gij = gij — 2t +t2(¢idj + dcij) (5.1)
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We write g for det gi; = g11922 — 975 = W?. Recall from Lecture 1 that
2Hg =2HW? = b;;g" = bi1g2 + baag11 — 2b12g12.
Kg = b =det bij = b11b22 — b%Q
Now we calculate det g;;. We have
detgij = gnge2 — Gio
= (911 — 2tdb11 + t7(¢2 + @7 c11))(gaz — 2UPbas + 17 (7 + ¢7c22))
—(g12 — 2tdbia + t*(¢udy + ¢*c12))?
= g —2t¢(b11ga2 + b22g11 — 2b12912)
+1%(¢hg22 + Dog11 — 2020y g12)
+t2¢7 (4b11ba — 4bTy + gr1022 + gazc11 — 2g12¢12) + PF(2) + ' G(2)
= g—4toHg+7hid;9" + 129> (4K g + g7 cij) + t°F(2) + 1'G(2)
where the higher-order terms are given by

F(z) = 2¢b11(¢] + ¢*caa) + 2022 (07 + ¢°c11) — 4¢b12(¢ady + dc12)
G(z) = (o7 + ¢2011)(¢§ + ¢%caz) + (¢ady + ¢7c12)?
By the lemma, ¢;; = 2Hb;j— K g;j, 50 g c;j = 2Hg"b;j— K g g;; = 4H?9—2K g,
where we used ¢ g;; = 2g in the last step. Hence
detgi; = g—4toHg+ t*¢7g" +t°¢*(4Kg+ 4H?*g — 2K g) + O(t*)
= g—4pHg+12¢i0;g" + t2¢*(4H?g + 2K g) + t°F(2) + t*G(2)

The term ¢;¢;g" can be written in terms of the “first Beltrami operator” as
g|Vu®|?. Our final result for det g;; is thus

detg;; = g{l—4topH +t*[|Vuo|* + ¢*(4H? + 2K)]|} + £3F(2) + t*'G(2)

We have 5

\/1+x:1+§—%+...

for small x, and hence

Vittat28=1+2t+ <é—a—2>t2+0(t3)

2 2 8

Now, for the first time, we assume that the surface u is regular in the closure
of Q. Then g is bounded below, so we can factor out /g and still get an error
term that is O(¢%), with the implicit constant independent of z. (The constant
depends on the lower bound for g). We have

VARG, = Al HGH + P (LVudf + K6 + 2262 267} + O(F)

VAL = 24HG + PV + K¢+ OF) 52)
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Note the miraculous cancellation of the H terms in the t? part! This means
that we will get the same formula for the second variation of area, whether wu is
minimal or not.

The formula for area is

A(ﬂ) = / \/ det gij dx dy
Q

We want to integrate (5.2). F and G are defined in terms of the first, second,
and third fundamental forms of u. Since we have assumed that the three fun-
damental forms are bounded, F' and G are also bounded. Since the constant
in the O(¢3) term is independent of z, we can integrate that term and still get
O(t3). The second variation of area in the direction ¢ is thus given by the ¢?
term:

d2

D2Al)(¢) = LAl

/Q{|vu<z5|2 +2K¢%} /gdzdy

/ (IVudl? + 2K 8%} dA
Q

/{|V¢|2 +2KW¢?} dx dy
Q

The last two lines express the second variation as an integral on the surface,
and then as an integral on the parameter domain. As Hildebrandt et. al. point
out (p. 84 of [14]), D?A[u] can be considered as a functional defined on the
Sobolev space of functions ¢ in H2(§)) with (generalized) boundary values 0
on Jf. This formula is valid whether u is harmonic or not, and whether u is
minimal or not, but only for linear variations. We show in the next section that
the formula holds for any variation, linear or not, when u is minimal.

5.3 The second variation of area is intrinsic

The second variation of some functional F' on some function space is said to be
intrinsic if, whenever v is a critical point of F', and u is a one-parameter family
of members of the function space, depending on a parameter ¢, such that when
t is zero, @ = u, then the second derivative 9*F(@)/0t* depends only on the
“tangent vector” wu; (and not on the higher derivatives of u with respect to t).
In other words, it depends only on the linear part of the variation.

Lemma 14 The second variation of area is intrinsic on the space of C* sur-
faces bounded by a given Jordan curve.

Proof. We return to the beginning of the calculation in the preceding section,
where we assumed 4 depends only linearly on w, and replace it with a more
general variation. We will re-do the first few lines of the calculation and show
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that only the linear part of the variation matters. Note that for this result
we assume v is minimal, which was not assumed in the previous section. The
variation is assumed to be real-analytic in .

@ = u+teN + >N + O(t?)
@ = ui+tiN +tdN; + 2N + 2)N; + O(t%)

Hence, at points where ¢ is C! and which are not the exceptional points on the
boundary, and neglecting terms O(t?), we have

Gij = Uil

(ui + (PN + ON;) + 2 (hiN +P1N;)) - (5.3)
(uj +t(p; N + ¢N;) + t*(1; N + ¢N;))

Gij — 2tdbij + 12 (dih; + 2 NiN;) — 2t%1hb;;

gij — 2tdbij + 7 (¢icb; + ¢ cij) — 26%Pby;

gij — 2t(¢ + t)by; + 7 (dig; + d7cij)

Comparing this result to (5.1), we see that the last term is the same as before,
and the new part is the ¢ part of the second term. That is, the ¢b;; has been
replaced by (¢ + t1)b;;. This change propagates through the computation in

the previous section so that the —2tH¢ term in (5.2) becomes —2tH (¢ + t1)).
Specifically

Vdetg; = gl —2tH(¢+ 1) + t2{%|vu¢l2 + K¢?} + O(t?)]

Now, when « is minimal, we have H identically zero, so the extra term disap-
pears, and we get the same answer for the second variation as before. If u is
not minimal, then the extra term does contribute an additional ¢? term to the
area; but here we are assuming v is minimal. That completes the proof of the
lemma.

5.4 Non-normal variations

Here we consider harmonic variations k mapping the unit disk into R and
tangential on the boundary, i.e. k(e??) is tangent to I' at u(e®). The main
result is that first and second variations depend only on the normal component.

Theorem 19 Let u be a harmonic surface defined in the unit disk and bounded
by a Jordan curve I'. Let N be the unit normal.

(i) Suppose HW is integrable on the unit disk. Then the area functional A
is Frechet-differentiable at u, and DA[u](k) = DA[u](k - N)

(ii) If w is a minimal surface, the second Frechet derivative D*Alu] is a
well-defined bilinear form. Then we have

D?A[u](h, k] = D*A[u][h - N,k - N;

that is, the second variation depends only on the normal component.
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Proof. Ad (i). Let u be harmonic with HW integrable. Let u’ be any C*
one-parameter family of C*# harmonic surfaces with u® = u. Write the partial
derivative uY in the form A + ¢ N. Represent A on the boundary in the form
Aje + Agn, where e is a unit vector tangent to I' and n is a unit vector e x N.
Then a straightforward calculation, imitating our earlier calculation for normal
variations, shows that

DA[u](u?):—/DHWqﬁdxdy—l—/FAgds

where ds is the element of arc length along the boundary. In the case of tan-
gential variations we have As = 0, so the first variation depends only on the
normal component ¢.

Ad (ii). To calculate the second variation, we consider a two-parameter
family vt with ©°° = u, and compute

82A[ust]
0s0t
Let h = uPY and k = v, and ¢ = h- N, and ¢y = k- N. Then
82A[u5t]
0s0t
/ P(=A¢+2KW¢) da dy
D

D?*A[t|(h, k) =

These computations are not (yet) supplied here; see [17], p. 94, for another
case of stating the result without including the computations—at least I am in
good company.
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Chapter 6

Eigenvalues and the Gauss
Map

6.1 The Gauss map of a minimal surface

KW is the Jacobian of the Gauss map N, considered as a map from D to the
Riemann sphere S?. This map is conformal when u is a minimal surface (in
harmonic isothermal form). The easiest way to see this is to consider the com-
position of the Gauss map with stereographic projection. We have an explicit
formula for stereographic projection, and we can then work out an explicit for-
mula for the stereographic projection of N. This turns out to be nothing but the
function g in the Weierstrass representation of w. That is, if S is stereographic
projection from S? to R?, then So N is a meromorphic map from D to R?, with
poles where N points in the positive Z-direction. Here are the details:

Theorem 20 Let u be a minimal surface, N the unit normal to u, and f and g
the functions in the Weierstrass representation of u. Then g is the stereographic
projection of N, and hence N is conformal.

Proof. We calculate the basic differential-geometric quantities of u in terms of
f and g in the Weierstrass representation of u. First, the tangent vectors u,

and u, determine f = u, = u, — tuy. Then

W2 =l = fuy

2

| =

= é[ff(l — )1 =g+ ff(1+9%)(1+9)* +4f fgg]
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1

= PO+ 1gl" + 1+ 19" + 4lgf)
1

= P+ 19" +21gP7)

S [If(l . |g|2>]2

Next we calculate N. We calculate

2Re
2 1 2 g
o = LPQI) | 9
Yy 4 9
lg|* —1
It follows that
Uy X uy| = W3
and hence
N - Uy X Uy
[uz X uyl
2Re g
1
g g =1

1

Stereographic projection S maps the sphere S? to the plane.! The map is

defined by
T 41T
S((z1, 2, 23)) = 11—7:532

The equation for the inverse of stereographic projection is

Thus g is the stereographic projection of V.

6.2 Eigenvalue problems

This section reviews the basic facts about eigenvalues and eigenfunctions. Two
classical references are [11], Chapters 10 and 11, and [8], Chapter V, especially

pp- 297 ff.

1 Geometrically, we picture the sphere (or radius 1) lying with its north pole on the Z-axis,
and its equator is the unit circle in the XY plane. The image S((z1,z2,23)) is the point
where the line joining the north pole to (z1,z2,23) meets the XY plane. It is also possible
to visualize a sphere of radius 1/2 with its south pole at origin, and its center at (0,0,1/2).
The equations are the same.
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We consider the problem

A+ Af(z,y)p = 0

where f(z,y) is a given function, nonnegative in D, and positive except at
isolated points, and ¢ is to map D into R?, vanish on the boundary, and satisfy
the given equation in D. Values A for which a nonzero solution ¢ can be found
are called eigenvalues.

A suitable set of functions ¢ defined on D and vanishing on S* can be turned
into a Hilbert space with the inner product

(60) = | Vol ) Votay) dsdy
D
The Rayleigh quotient is defined by

_ fD |V¢|2 dx dy
Ip fo? dxdy

The infimum of R[¢] over all ¢ exists and is the least eigenvalue Ay, .

There exist infinitely many eigenvalues, and the corresponding eigenfunc-
tions form an orthonormal basis for the Hilbert space mentioned. The least
eigenvalue has only a one-dimensional eigenspace. That is, it is non-degenerate
(an eigenvalue is called degenerate if the corresponding eigenspace is of dimen-
sion greater than one). Each of these eigenfunctions is smooth in the interior
of the domain—at least as smooth as f(x,y) is. Moreover, their zero sets are a
union of piecewise smooth arcs; the gradient is zero only at isolated points. In
[8] there are pictures of these arcs for several examples.

One can also consider eigenvalue problems over other plane domains than
the disk. One can also consider eigenvalue problems on a surface. If () is a plane
domain, or a domain on a surface, we let Apin (£2) be the least eigenvalue of the
equation A¢ — f(x,y)d =01in Q, ¢ = 0 on 9.

R[¢]

Theorem 21 (Monotonicity of the least eigenvalue) . If Q1 C Q, we
have

Amin (Ql) > Amin (QQ ) .

Proof. The least eigenvalue is given by the infimum of the Rayleigh quotient.
But competitors for the Rayleigh quotient can be allowed to be continuous but
only piecewise differentiable, so the least eigenfunction of the smaller domain 4,
extended to be zero outside €)1, is eligible to count in the infimum of Rayleigh
quotients for Apin(Q2). Hence A(21) < A(Q2). But if €y is strictly contained in
()5, then this function is not smooth in the interior of {25, contradiction.

Theorem 22 (Properties of the least eigenfunction) The least eigenfunc-
tion, i.e. the eigenfunction corresponding to the least eigenvalue, has only one
sign.
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Proof. Let ¢ be the least eigenfunction. Define ¢ = |¢|. Then the Rayleigh
quotient R[¢)] has the same value as R[¢]. If ¢ does not have one sign, then the
zeroes of ¢ include an arc, and along that arc ¢ is not smooth, since V¢ only
has isolated zeroes. Hence we can round off ¢ slightly, decreasing the Rayleigh
quotient. Hence R[¢p] = R[¢] is not a minimum, contradiction.

Lemma 15 (Hopf boundary-point lemma) Let ¢ be any solution of N¢ +
M (z,y)d = 0 which is nonnegative in a neighborhood of a boundary point p.
Then the normal derivative ¢pu is not zero at p.

Proof. See [10], p. 519 (or any other good textbook on PDE). This is a property
of second-order linear elliptic equations, and the proof takes us too far afield.

Corollary 3 If ¢ is the first eigenfunction then ¢, does not vanish on S*.

6.3 Eigenvalues and the Gauss Map

The connection of these classical results to minimal surfaces arises when we take
the function f(z,y) to be —KW, where K is the Gaussian curvature x1k2, and
W is the area element det g;; = vV EF — G?. Since for minimal surfaces we have
ko = —K1, the Gaussian curvature K is always negative, or at least not positive,
so —KW is nonnegative. It might be zero at branch points (where W is zero),
and it might be zero at umbilic points, where K is zero.

KW is the Jacobian of the Gauss map N. Therefore, in case the Gauss map
is one-to-one, the eigenvalue problem A¢ — AKW¢ = 0 in D is equivalent to
the eigenvalue problem for the Laplace-Beltrami operator on the sphere:

Ap+Ap =0

on the spherical domain N (D). In general the Gauss map is not one-to-one,
so the eigenvalue problem corresponds to a “multiply-covered” domain on the
sphere, intuitively. This can be made precise but it is not worth the trouble;
one may use the intuition, but formally one just works with A¢ — AKW¢ in D.

6.4 The eigenvalue problem associated with D?A|u]

Theorem 23 Let u be a minimal surface (not necessarily in harmonic isother-
mal form). Then the kernel of D?Alu] is exactly the space of solutions of the
etgenvalue problem

Ap—2KWe = 0.

In particular D*Alu] has a nontrivial kernel if and only if 2 is an eigenvalue of
Np—AKWe¢=0.

Associated with a conformal map N defined on a region €2 in the plane and
taking values in the Riemann sphere, there is a natural eigenvalue problem:
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1
A¢—§A|VN|2¢ = 0 inQ
¢ = 0 on 02

The Jacobian of N is 3|[VN|2. In case N is the Gauss map of a minimal surface,
the Jacobian is also =KW, so %|VN|2 = —KW and the eigenvalue equation
becomes

Ap+IAKW¢p =0

As is discussed above, if ¢ is in the kernel of D?A(u), then ¢ is an eigenfunction
of this equation for A = 2. But for purposes of this section, N can be any map
from the disk to the Riemann sphere.?

We denote the least eigenvalue A of this problem by Ay q, or simply by
Ao when N is clear from the context. Sometimes we use the notation Apin.
Sometimes, for a minimal surface u, we speak of the “least eigenvalue of u”
rather than the “least eigenvalue of the second variation of u” or “the least
eigenvalue of the eigenvalue problem associated with the second variation of u.”

The least eigenvalue is well-known to be equal to the infimum of the Rayleigh
quotient

2

Rig) = LIVl dzdy

I Jo 3IVN[2¢? dx dy
When we speak of the least eigenvalue A of a region {2 on the Riemann sphere,
we mean the following: Let A be the stereographic projection of Q2 and N the
inverse of stereographic projection. Then Aq := Ay a. The eigenvalue problem
A¢ — LA[VN[*¢ on A is equivalent to the problem A¢ = A¢ on €2, where now
A is the Laplace-Beltrami operator on the sphere. If Q contains the north pole,
we should use stereographic projection from some point not contained in 2. We
do not need to discuss the case when 2 is the entire sphere.

Ezample. We compute the least eigenvalue when N () is a hemisphere. In
this case the eigenfunction in the lower hemisphere is minus the Z-component
of N. For example with Q equal to the unit disk and g(z) = z, we have N(z)
the inverse of stereographic projection. With |z| = r and z = = 4 iy we have

1 2x
N(z)=——| 2
(2) =7 e T2y_1

The eigenfunction ¢ is given, with |z| = r, by

_1—7°2

o) =T

2Some readers may be familiar with another form of the eigenvalue equation for which
the critical eigenvalue is zero rather than 2, or with this form but with a factor of 2 inserted
so that the critical eigenvalue is 1 instead of 2; both forms are discussed in [17], p. 103, cf.
equations (62) and (62').
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A few lines of elementary computations (or a couple of commands to a computer
algebra program) show that

D6 = but

_ 8(r2 —1)
1+ )P
and
IVN]2 = N§+N§=(1J§77;2)2
oaps = S

Hence, A¢ — |[VN|?¢ = 0, which means the eigenvalue of a hemisphere is 2.

Lemma 16 Let Q) be a connected open set on the sphere with least eigenvalue
Aq. Suppose A is a region (open set) in the plane and Q@ C N(A) and N(0A)N
Q = ¢. Suppose that boundary of Q is C? and the boundary of A is piecewise
C? with the pieces meeting at positive angles. Then Ay .a < Xq, and strict
inequality holds if N~10Q contains an interior point of A.

Remark. Regarding the assumptions on the boundaries, the proof requires that
the least eigenvalue be the minimum of the Rayleigh quotient, and that the
gradient of the least eigenfunction of €2 not vanish at any boundary point. The
hypotheses given imply these conditions but still allow A to be a half-disk. See
[12].

Proof. Let ¢ be the least eigenfunction of © and define ¢y on A by setting
P(z) = ¢(N(2)) if N(z) € Q else ¢(z) = 0. Then 9 is admissible in the
Rayleigh quotient for A, since ¢ is zero outside Q and N(JA)NQ = ¢. The
Rayleigh quotient in question is

ffA |V¢I2dwdy
[ s 5IVN 22

(The factor 1/2 was explained above.) Since Q@ C N(A), on the support of ),
N is a covering map (i.e., locally a homeomorphism), except at the points of
ramification of N, which are isolated. Since € is connected and N(9A)NQ = ¢,
the number of sheets over (cardinality of the pre-image of) N of each non-
ramification point is the same. Hence each of the two integrals in the (numerator
and denominator of the) Rayleigh quotient is the number of sheets times the
corresponding integral on the Riemann sphere, with ¢ in place of ¥. That is,
the Rayleigh quotient for 1) on A equals the Rayleigh quotient for ¢ on §2, which
is Ag. Since Aa is the minimum of such Rayleigh quotients, Aa < Aq. Now
suppose there is an interior point p of A in N=1(9€2). By Hopf’s lemma, V¢ is
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never zero at a point on 9§2 where the boundary is C2. By analyticity, VN is
zero only at isolated points; so there is a point ¢ near p which is still on N~1(92)
at which VN is not zero and V1) is not zero. Hence near g, the set N~1(99Q) is a
smooth arc, and V4 is zero on one side of it and bounded away from zero on the
other side. Hence we can “smooth out the edge” near ¢ to obtain a function v’
which is admissible for the Rayleigh quotient and has smaller Rayleigh quotient
than 9. Hence Aa < Aq. This completes the proof of the lemma.

Remark. The lemma shows that if the Gaussian image of a minimal surface
defined in A contains a hemisphere, then the eigenvalue Ay, A is less than 2.

6.5 The Gauss-Bonnet theorem

The total curvature of a surface is by definition fD KW dzx dy. This is the area
(counting multiplicities) of the “spherical image” of the surface, that is, the
range of the unit normal V.

The geodesic curvature of the boundary 4 is the component of the curvature
vector of the boundary in the direction tangent to the surface. In more detail:
at each point of the Jordan curve I', there is a unit tangent 7' = I';, where s is
arc length along I'. The rate of change T is the curvature vector of I', which is
normal to T'; and can be broken into a component in the direction of the surface
normal N, and a component orthogonal to that (hence tangent to the surface),
whose magnitude is defined as the geodesic curvature, sy, of I' (relative to the
specific surface u bounded by T').

The total curvature of a Jordan curve I" is the integral of the magnitude of
the curvature vector around the curve. The magnitude of the curvature vector
is usually written k. (Curiously, there is no standard notation for the curvature
vector itself.) Thus, the total curvature is fr rds. This quantity depends only
on I', not on some surface bounded by I'. Of course the geodesic curvature for
any surface u bounded by I' is bounded above by the total curvature of T'.

These quantities are connected by the Gauss-Bonnet theorem, stated below.
The proof of that theorem requires a pretty formula for the geodesic curva-
ture, which we give in the next lemma. We assume u is given in isothermal
coordinates. (Use Lichtenstein’s theorem if necessary, or if « is minimal, use
uniformization.)

Lemma 17 (Minding’s formula) The geodesic curvature of a surface defined
in the unit disk, in isothermal coordinates, is given by

kgVW = (log VW),.
Proof. This formula is proved in [14], p. 33. The proof is a straightforward
calculation, but it involves the Christoffel symbols, which we did not introduce

in Lecture 1.

Theorem 24 (Gauss-Bonnet) If u is a regular surface of class C? bounded
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by a C3 Jordan curve I' then

27
/ Kdedy—i—/ kg (0)VWdO = 27
D 0

This can equally well be written as

/KdA—i—/ngds:%r
u r

Remarks. In case u is a minimal surface, KW is negative. In case u lies in a
plane, K is zero and the equation is obvious. In case w is a spherical cap, the
geodesic curvature integrates to less than 27, but K is positive.
Proof. In isothermal coordinates, the Gauss curvature has a simple and remark-
able formula:

—KW = Alog VW

This is a special case of Gauss’s Theorema Egregium, which expresses the Gauss
curvature K in terms of the first fundamental form g;;, in spite of the fact that
it was defined using the second fundamental form. In particular, if we write out
Alog VW in terms of derivatives, we find:

AlogVIW = (log VW )z + (log VW),

0 (. 0 (V)

oz VW Oy VW

which is the Theorema Egregium for the case of isothermal coordinates. See for
example [14], formula (27), page 30; and the proof of the Theorema Egregium
can be found on the preceding pages.

Proceeding to the proof of the Gauss-Bonnet theorem, we integrate this
formula for —KW:

—/Kdedy = /Alongdxdy

2
= / (log VW), db by Green’s theorem
0

2w
/ kgVW —1d6 by Minding’s formula
0

27
/ kgVW dO — 27
0

which proves the theorem.

6.6 The Gauss-Bonnet theorem for branched min-
imal surfaces

There is a beautiful extension of the Gauss-Bonnet theorem to branched minimal
surfaces. The formula can be thought of this way: Each interior branch point of
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order m, and each boundary branch point of order 2m, counts as 2mm of total
curvature. In other words, if the surface is perturbed so as to “split” or “break”
the branch point, there will necessarily be a lot of curvature created.

Theorem 25 Ifu is a branched minimal surface defined and C? in the closure
of a simply-connected domain, and M is the sum of the orders of the interior
branch points plus half the orders of the boundary branch points, then the

2m
/ KWda:dy—2Mﬂ'—|—/ Kq()VWdO = 2w
D 0

Remark. If u spans a Jordan curve, then the boundary branch points must be
of even order. However, this is not an assumption of the theorem; boundary
branch points of odd order are also allowed, even if the boundary cannot be
taken on monotonically in that case.

Remark. The theorem can also be generalized to surfaces defined in multiply-
connected domains (see [15] p. 121) and to surfaces with piecewise C'! bound-
aries, for example polygonal boundaries (see [14], p. 37).

Proof. One cuts the branch points out of the domain, preserving the simply-
connectedness of the domain, by first connecting each branch point to the bound-
ary (by a set of non-intersecting arcs, one per branch point) and then “fattening”
each arc a tiny bit. If we think of the domain as an island and its exterior as the
sea, we are running a river from the sea to each interior branch point, which is
the source of that river. At the branch point, we make a small circle around the
branch point, so the river connects to a “pond” containing the branch point.
Now the Gauss-Bonnet theorem applies to the (regular) surface defined in the
island minus the rivers. The contributions to the geodesic curvature along the
banks of the rivers very nearly cancel out, and do cancel out when we take
the limit as the river width goes to zero, since the inward normals are in op-
posite directions on opposite banks. Near each interior branch point there is
an almost-closed circle; this maps to almost m + 1 circles on the surface and
hence contributes (m + 1)27 to the geodesic curvature. At the river mouths,
however, there are two ninety-degree turns in the opposite direction, and where
the river joins the “pond” containing the branch point, there are two more
ninety-degree turns, so the net contribution from each interior branch point is
(m=+1)27 — 27 = 2mmr. Similarly, at a boundary branch point of order 2m there
is a semicircle that contributes (2m + 1)m, and two ninety-degree turns in the
opposite direction, so the net contribution is (2m + 1)m — 7 = 2mn. Taking the
limit as the river width goes to zero, the proof is completed.

6.7 Laplacian of the Gauss map of a minimal
surface

Theorem 26 Letu be a minimal surface. Then the Laplacian of its unit normal
is given by the following formula: AN = 2KW N
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Proof. To prove this elegantly, we make use of the general fact that the Laplace-
Beltrami operator of any surface S, applied to the position vector of S, is exactly
twice the mean curvature of S. Apply this fact to the Riemann sphere, whose
position vector h(w) coincides with its unit normal. Thus Ah = —2h. Next,
note that the map from the disk D to the Riemann sphere induced by the
Gauss map of u is a conformal map with Jacobian —KW. Under a conformal
map, the Laplace-Beltrami operator changes to the Laplace-Beltrami operator
on the range surface, multiplied by the Jacobian of the mapping. Hence AN =
2KW N, and the theorem is proved.



Chapter 7

Second Variation of
Dirichlet’s Integral

7.1 Tangent vectors and the weak inner product

Consider the space of all C*# surfaces bounded by a Jordan curve I' in the
non-monotonic sense, i.e. we do not require that the surface take the boundary
monotonically. The first variation of Dirichlet’s integral is easily computed from
the formula E(u) = (1/7) [ wu, df. When we write a subscript 7 by a function
of 6, it means the partial derivative of the harmonic extension, evaluated at
r = 1. The first variation is given by the formula

DE(u)[k] = ~ / oy dO).

™

Here k is a “tangent vector” to w in the manifold of harmonic surfaces; that is,
a function from S! to R™ such that k(6) is tangent to I' at u(e', for each 6§, and
k is C*B. It follows from the fundamental lemma of the calculus of variations
that the minimal surface equation can be written as ugu, = 0 on St.

In case v has no boundary branch points, every tangent vector has the form
Aug for some scalar function . If u has boundary branch points, this is not
so. In that case the tangent vectors may be nonzero at the boundary branch
point. Let I' be given in arc-length parametrization; suppose v = I" o h. Then
all tangent vectors have the form A'y o h for some scalar function .

There is an inner product on the space of tangent vectors to a given minimal
surface u, namely that defined by (h,k) = [hykdf. Tromba calls this the
“weak inner product”; we use the terms “orthogonal” and “weak orthogonal”
interchangeably. Note that the space of tangent vectors is not complete under
the metric induced by this inner product. (It is “weak” because the topology
induced by this norm is weaker than the norm inherited from C*#(S, R™).)

If we extend h and k to the disk by harmonic extension, then (h,k) =

73
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Jp VRVE dz dy, since
/ A(hk) = / hAk +2VhVE + kAR dx dy
D D

/ (hk), do = / VIV k da dy
D

/hrk—i—kThdH = /2Vthdwdy
D

and [ h,kdf = [k,hdf. Alternately one can apply Green’s theorem directly
to observe that both (h, k) and (k, k) are equal to [, VAVE dx dy.

7.2 The conformal group

The conformal group of the disk (the group of conformal transformations of the
disk) acts on the space of harmonic surfaces by composition (i.e. by reparametriza-
tion), and preserves the property of being a minimal surface. One calculates that
the tangent directions to u introducted by this action, which we call the con-
formal directions, are of the form Aug, where A has the form a + bcosf + csinf.
Each minimal surface is part of a three-parameter family of minimal surfaces
differing only by the action of the conformal group. Therefore we wish to impose
some restriction on the class of harmonic surfaces considered, so that only one
member of each such family will be allowed. The traditional way to do this has
been to impose a “three-point condition”, requiring that three given points on
S be transformed to three given boundary points. Another way, more suited
to the global-analytic approach of [23], is to restrict attention to the family
E of harmonic surfaces defined in [23]. The definition of E depends on a fixed
minimal surface u, and it is defined to be a co-dimension 3 submanifold of the
space of harmonic surfaces bounded by I' (in the non-monotonic sense) such
that the three conformal directions at u are orthogonal to the tangent space of
E at u. For our purposes, it is not important exactly how the conformal group
action is disposed of-it is only necessary to realize the necessity of doing so.

We sometimes have to work with a one-parameter family of minimal or har-
monic surfaces; we denote the dependence on the parameter ¢ using a superscript
ut, since there is little chance of confusing that ¢ with an exponent. Sometimes
the superscript ¢ is omitted, as in wu;, which means the partial derivative of u?
with respect to t. We call such a family non-trivial if u; = t®h for some positive
number a and some tangent vector h (depending on t) such that h is not a
conformal direction when ¢ = 0.

It should be noted that a > 0 is allowed; that is, u; can vanish when ¢t = 0.
When we use the tools of global analysis to prove the existence of one-parameter
families under certain conditions, those families are real-analytic in ¢; so if a > 0,
we can reparametrize using a t® as the new parameter; but the new family is only
C', since it is real-analytic in a rational power of ¢ rather than in ¢. The families
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constructed by global analysis have the property that, when so reparametrized,
their tangent vectors are nowhere conformal. In fact, if the surfaces u’ are not
all conformal reparametrizations of the same surface, then we can “project” each
ut onto its sole representative in E , obtaining as a result a non-trivial family,
each member of which is a conformal reparametrization of the corresponding

surface in the original family.

7.3 Calculation of the second variation of F

In this section we calculate the second variation of E without using methods
from complex analysis. In the next section we calculate it more efficiently using
complex analysis. The serious student should study both sections. The proof
using complex analysis turns out not really to be shorter, but it generalizes more
easily to calculations of the higher variations, and also seems somewhat more
beautiful.

Theorem 27 (Tromba) The second variation of Dirichlet’s integral is given
by
D2E[u](h, k) = /k(m — hg) df

where k = \ug and h = nu,. The tangent vector k to the minimal surface u
belongs to Ker D?E[u] if and only if any of the following three forms of the
“kernel equation” hold:

uek, + urke

kou, =0

or equivalently, with k= \u,,
Uug (/{T — ];9) =0

Proof. Let k = Aug and h = nug be two tangent vectors to the minimal surface
u. Then oKl
U
D?Elu)(h,k) = ———
el B = =500
where w is defined by
a(0) = u(f +tA+ sn).

Define
'Y= Nugg
2 = 1uge
f12 — )\nuee

Expand @ to second order in s and ¢:

1 1
o = u—i—kt—i—hs—i—§f11t2+§f22s2+f12st+...
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Differentiating, we have

1 1
Uy = Uyt ket + hes + 5fg}HtQ + §f§252 + flst .
- 1 1
Gy = uy+kyt+hys+ 5f‘vjlﬁ + 5J“y”s? + f2st+ .

Thus
1 1

02 = ux? + thpuy + shpug + st(f2uy + kphe) + 2 (k2 + §uwf;1) + s%(h2 + §umf§2) +....

Adding this with the corresponding expression for uf/, we get

\Val* = @+
= |Vul|? + tVkVu + sVhVu + 2st(V f'2 + VEVh)
+2(IVEP? + VuV 1) + s*(|Vh]? + VuV f22) 4. ..
Integrating this expression, on the left side we get 2E[u] = [, |Va|* dzdy.
Looking at the st term on the right, we find
O?E|i]
0s0t

= / Vf?Vu + VEkVhdz dy
D
Applying Green’s theorem, we have
2 2w
/ 2, + kh,.do = / A, ugg + khy df.
0 0

Integrating the first term by parts, we get

O?Elil]
0Js0t

27
/ (=A\nu,)oug + kh, do
0
27
= / —k(nur)e — Nonurug + kh,. df
0

27
= / —k(nu,)e + kh,. dO since u,ug = 0. (7.1)
0

27
/ k(h, — hg) df
0

That is the third formula of the theorem. If the integrand vanishes for all
k = Aug, the fundamental lemma of the calculus of variations yields

u‘g(hT - ibg) =0.
Replacing the letter h by k, we have

ug (k. — ko) = 0,
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which is the formula given in the theorem.
Now to prove the second formula of the theorem. From (7.1) we have

2m
D?*E[u)(h, k) = / —k(nu,)e + kh, df
0
Integrating the first term by parts, we have

2m
D*Elu)(h, k) = / kenu, + kh,. d
0

2w
/ kou, + k.h df
0

27
= / n(kou, + kyug) do
0

Applying the fundamental lemma of the calculus of variations, we see that h is
in the kernel if and only if kgu, + k,ug vanishes identically; but we have proved
this is equivalent to the second formula of the theorem. That completes the
proof of the second formula.

Now to prove the first formula of the theorem. Note that (on S')

22usk, = (up — iug)(k, — ikg).

This will have zero imaginary part if Im ((u, —iug)(k, — ikg) is identically zero;
that is, if ugk, + u,-kg is identically zero. But that is the second formula. Hence
the kernel equation takes the form

Im 2%u.k, = 0.

Let f(z) = z%u.k,. Then f is holomorphic on the disk and takes the whole disk
onto the real axis. Therefore f is a constant function, f(z) = ¢ for some real c.
Integrating around S we get 27c, but by Cauchy’s theorem the integral around
S1is zero. Hence z%uk, is identically zero. Hence uik, =. That completes the
proof of the theorem.

7.4 Second variation of £ and complex analysis

We now give another calculation of D?E[u], using complex analysis. We recall
some basic formulas and facts; here u and f are (real or complex) functions
of z = x + iy. Usually, but not necessarily always, u is real-valued and f is
complex-valued.

Uy = = (Up — TUy)

N = N =

(ug + fuy)
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AU = Ugy + Uyy = duz
f is complex analytic if and only if fz =0

If uw is a harmonic function, then u., = du/dz = (u, — iu,) is complex
analytic, since its derivative with respect to Z is u,s = 4Awu, which is zero since
u is harmonic.

To work with polar coordinates we note

Uy = i(ur —dugp)

and for integrals around the unit circle, where z = €, we have

dz = iedf = izdf.
The minimal surface equation (for a harmonic surface u) takes the form

2 _
u; =0

because

4u§ = (um—iuy)2
2

= uj— ui — 2i(uguy)

which is zero if and only if uZ = u? and uzu, = 0, i.e. u is a conformal mapping.
Dirichlet’s energy F(u) is defined as (where B is the unit disk):

1
E(u) := §/B|Vu|2d:vdy

1
= —/ uu, do
2 Js

We consider variations u(t) such that u; = ¢uy on S' when ¢t = 0. Here
¢ : S* = R. Define k := u; = ¢uy. Then k is a harmonic vector tangent to
u(S1) at the point u(e?). For short k is a “tangent vector.” If I' is the Jordan
curve u(S') then the variation u(t) may or may not, when restricted to S*, be
a reparametrization of I'. If it is, say u(t,e??) = '(y(t,0)), then

up =T (y(t, 0))7e(t, 6)

ug = T'(7(t,0))ve(t,0)

Integrating by parts we have

and hence u; = kug for
Tt
k=—+.
Yo
This k£ depends on t.
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The tangent vector k must lie in some nice class, such as C%*(S1), but then
¢ may have singularities at the boundary branch points of u (if any).

We differentiate the equation 4F(u) = [ wuu, df with respect to ¢. Since
u; = k, we get

4F(u) = /kuT + uk, do

In general for integrals over S!, we have

[ to.d8= [ 900

2F:(u) = /kuT—i—udeH

Hence

= 2/¢U9UT df

We can write this as

DE(u)[k] = /(bueur de

We have thus proved directly that the first variation of E is zero just when w is
conformal.

The equation for the first variation can be written in complex form, as
follows. We have

du? = (up —iug)?

2

= u;— ug + 2tu,ug

Since df = dz /i we have

4/¢zu§dz

= /¢2urue +i(u? —ul)df
Taking real parts we have
DE(u)[k] = 2Re / & zu? dz (7.2)

Next we compute the second variation D?E(u)[k, h]. For this we assume u
depends on two parameters t and s, where uy = k and us; = h are two tangent
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vectors, with k = ¢ug and h = 1ug. Differentiating (7.2) with respect to s, we
have

d 0
d—SDE(u)[k] = 2Re /qﬁzguz dz
= 4Re/¢zuzuzs dz
d
d—DE(u)[k] = 4Re /gbzuzhz dz (7.3)
5
Setting s = 0 we have
D?E(u)[k,h] = 4Re / bzuzh, dz (7.4)

Writing dz = iz df we have
D?E(u)[k,h] = 4/¢Im (z%u.h.)do

We can re-prove the kernel equation by applying the fundamental lemma of the
calculus of variations: this expression vanishes for all ¢ if and only if Im z%u.h,
is identically zero. Then

(ur — iU,g)(hT — ihe) =0
which in turn implies the kernel equation in the form

wghy + u,.hg = 0.

7.5 Forced Jacobi fields

Consider the kernel equation kg (k. — 12:9) = 0. One way in which this could
be satisfied is if k. — kg = 0; vectors k satisfying this condition and not in-
duced by the conformal group are called “forced Jacobi fields” or “forced Jacobi
directions”. Tromba proved that they do not occur in the absence of branch
points, and that in the presence of branch points there are two for each interior
branch point (counting multiplicities) and one for each boundary branch point,
so that the space of forced Jacobi fields is finite dimensional. (There can be at
most finitely many branch points, even if the boundary is not real-analytic, as
long as the total curvature of the surface is finite, thanks to the Gauss-Bonnet
formula for branched minimal surfaces.) The forced Jacobi directions are just
the directions k such that the function K = k + ik is complex analytic, i.e. such
that k is the conjugate harmonic function of k.

Another important characterization of the forced Jacobi fields is this: they
are exactly the tangent vectors of the form

k= Re (iwzuy)
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where iwz is a function meromorphic in the parameter domain, and having a
pole of order at most m at each branch point of order m. Any function w with
suitable behavior on the boundary, and poles of the right orders at the branch
poitns, will produce a tangent vector by this equation. The reason for writing
the equation with wz instead of with w is that in case the parameter domain is
the unit disk, the appropriate boundary condition is that w be real on S*. In
case the parameter domain is the upper half plane, the condition is that iwz
be real on the z-axis. The Appendix of [6] contains Tromba’s treatment of the
forced Jacobi fields.

Lemma 18 (Tromba [23]) Suppose u is a minimal surface, and k is a tangent
vector belong to Ker D*E[u] whose harmonic extension is everywhere tangent to
w. Then k is a forced Jacobi direction or a direction induced by the conformal

group.

Proof. Since k is everywhere tangent to u we have £ = au, + Su, for some
functions « and § defined in the disk. Define w = —i(a — $i). Then k =
Re (iwu,). We must show w; = 0, so w is meromorphic, and also we must show
that w is analytic except for poles at the branch points of order at most the
order of the branch point. Calculate:

E = Re (iwuy)
= WUy — WU,
= WU, — WUz
k., = WU, + iwl,, — 10, — 10Uz,

= Wil + WU,y — 10, since u,z = 0

Now take the dot product with u,. On the left we get zero, since k,u, = 0 is
the kernel equation and k is in the kernel of D?E[u] by hypothesis.

0

iwzuz + WU Uy — 10U,

= —i0,U, since u? = 0 and u,u,, = (u?), =0
But @, is the complex conjugate of wz. Hence wzuz = 0. That is,

(0w — By)ua + (ay + Bz)uy = 0.

This is a vector equation; since u,u, = 0, taking the dot products with u,
and wu, respectively shows that au, = B, and o, = —fu,, i.e. wz = 0 as
desired. Then K = iwu, is analytic except perhaps at the branch points, and
k = Re (K) except at the branch points. Since k is harmonic in the unit disk,
K is analytic in the unit disk. Hence w is meromorphic and has poles only at
the branch points and of order not greater than the order of the branch point.
That completes the proof of Tromba’s lemma.
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Chapter 8

Dirichlet’s Integral and
Area

8.1 From the kernel of D?E to the kernel of D?A

Theorem 28 Suppose that the minimal surface u has no (interior or boundary)
branch points, and a C™ boundary. If D*A[u] is positive definite on normal
variations, then D*Eu] is positive definite (on the space E , i.e. in directions
not induced by the conformal group).

Proof. For tangent vectors k to u, let F'(k) be the normal component of the
harmonic extension of k; thus F'(k) = k- N. According to the result given at the
end of Chapter 4, we have D?A[u](h,k) = D?A[u](F(h), F(k)]. Fix a tangent
vector k, and let @(0) = u(f + tA, so that 4; = k when ¢t = 0, where k = Auy.
In view of the general inequality E(u) > A(u), and the fact that w is a critical
point of both F and A, we have

d*>E[u]
dt?
Writing ¢ for F(k), we have

D?Elu](k, k) > D*Alu]($, ).

d?*A(u)
dt?

lt=0 > le=o-

By hypothesis, the right-hand side is positive for all non-zero ¢. Hence D? E[u](k, k) >
0 unless ¢ is identically zero, i.e. unless k is tangential. Then, by Tromba’s
lemma, k is a forced Jacobi or conformal direction. But by hypothesis, v has
no branch points, so k is not a forced Jacobi direction. Hence it is a conformal
direction. That completes the proof.

Note that the previous theorem works in R™. Our next theorem is only for
R3:

Theorem 29 Let u be a minimal surface in R> with C™ boundary, and unit
normal N. Let k be in KerD?E[u]. Then ¢ = k- N belongs to KerD?A[u].

83
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Corollary 4 If KerD?Alu] has no kernel among normal variations, Ker D*E|u]
contains only the conformal and forced Jacobi directions.

Proof. The Corollary follows immediately from the theorem and Tromba’s

lemma. We now prove the theorem. Suppose k is in KerD?E[u]; we shall
show ¢ = k- N satisfies Ap — 2KW¢p = 0. We have

A¢ = (Ak)- N +2VEVN + EAN.

The first term vanishes because k is harmonic. We claim the second term
vanishes also. To prove this, fix a point z in the unit disk, and choose coordinates
a and b in a neighborhood of z that diagonalize the first fundamental form at
z, so that N, = kyu, and N, = koup, where k1 and ko are the principal
curvatures of u at z. (Note: if these equations hold in a whole neighborhood,
then a and b are called “local curvature coordinates”; it costs some trouble to
prove they exist, and we do not need them; we need the first fundamental form
to be diagonalized at one point only, which is easy by taking a and b to be a
certain linear combination of z and y.) Because u is a minimal surface, we have
K1 = —ko. Thus

VEVN = k1 (kquq — kyup) = k1 Re (e*"k.u.)

where v is the angle between the positive z-direction and the positive a-direction
(so v is a function of z). Since k is assumed to be in KerD?Eu], we have
k.,u, = 0. Hence the term VKV N vanishes, and we have proved A¢ =k - N.

The proof of the theorem is thus reduced to proving AN = 2KWN. But
this is Theorem 26. That completes the proof.

8.2 From the kernel of D?A to the kernel of D*E

In the previous section we proved that every tangent vector in the kernel of D?FE,
except for the forced Jacobi and conformal vectors, has its normal component
in the kernel of D2A. In this section we address the converse question, whether
every normal variation in the kernel of D?A arises in this way, as k- N for some
harmonic tangent vector k. This is answered positively in part (i) of the theorem
below; k is found by solving a certain differential equation given in part (v).
Part(ii) addresses the question of the uniqueness of k. Part (iv) characterizes
the kernel of the map F : k — k- N; in “Tromba’s lemma” we identified the
kernel of F restricted to KerD?Eu], but that left open the question whether
it might have additional kernel not in D?E[u].

The following theorem was printed in [2], which was not a journal publica-
tion. Parts (i) and (v) were obtained independently by Schiiffler in his disser-
tation [20], at least for the case when there are no boundary branch points. A
requirement for the German Ph. D. is original publication, and the editor to
whom I submitted [3] gave me a choice: omit this theorem, or delay publication
until after Schiiffler’s. I chose to omit it, and never subsequently published the
result, but it seems logically to belong in this chapter.
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Theorem 30 Let u be a minimal surface in R with real-analytic Jordan bound-
ary, not lying in a plane. Let N be the unit normal to u. D is the unit disk.

(i) Let ¢ be a nontrivial solution of AN¢ —2KW ¢ =0 in D, ¢ = 0 on the
boundary S*. Then there exists a tangent vector k to u such that ¢ = k- N and
k is in Ker D?Elu].

(i1) Any two vectors k as in part (i) differ by a forced Jacobi or conformal
direction.

(iii)DimKerD?E[u] = 3 4+ M + DimKerD?A[u|, where M is the number
of forced Jacobi fields, namely M 1is the sum of the orders of boundary branch
points plus twice the orders of the interior branch points.

(iv) If k - N is identically zero for some tangent vector k, then k is forced
Jacobi or conformal.

(v) All solutions k of the problem in part (i) may be characterized as follows:
They are k = Re (hu.)+¢N, where h is a complex valued, real analytic function
in D minus the branch points of u, satisfying the following system of two partial
differential equations in the two unknowns Reh, Imh:

h: = G in D minus the branch points
Re (zh) = 0 on S*
0*u N
where G = (ba—;; W
(vi) On S, we have k = Aug, where X = —izh is real on S* and h is as

above.

Proof. Let G be as defined in part (v), and suppose h satisfies the equation
given there. Define
k = Re (hu) + ¢N.

We shall prove that Ak = 0, that k,u, = 0, and that k(#) is tangent to the
boundary of u at u(f), except possibly at the boundary branch points. (The
exception applies to all three equations.) We first check the boundary condition,
which can as well be expressed in the form k- N = 0 and k - u,, = 0; we shall
derive this from the boundary condition Re (zh) = 0 satisfied by h. First, we
automatically have k- N on the boundary, since u, - N =u,-N =0and ¢ =0
on the boundary. We now compute on S':

k-u. = Re (hu,)- Re (zu,)

(Re (h)us + T (h)uy)(zts + yuy)
= (zRe (h) +yIm (h))W

—  WRe(zh)

= 0 on S' by hypothesis

Here is a second, more direct, proof that on S!, k is a multiple of ug, that also
yields the result stated in (vi) of the theorem: k& = Re(hu,) = Im (ihu,) =
Im (izhzu,). But on S, izh isreal since Re (2h) = 0. Hence k = izh Im (zu,) =
—izhug, a real multiple of ug.



86 CHAPTER 8. DIRICHLET’S INTEGRAL AND AREA

Next we prove k, - u, = 0. As usual, we may omit explicit mention of the
dot product when two vectors are written side by side. We compute k,u, = 0
as follows.

2k = 2Re (hu,) +2¢N
= hu, + hi; + 2¢N.

Differentiating with respect to z, and using the fact that (u;), = 0 (since u, is
holomorphic), we find

2k, = hou, + hug, + h; + 2(¢N)..
Since h; = G = ¢uz:N/W, we have h, = G, so
2k, = hou, + hu,., + Gz +2(¢N). (8.1)
We have @ = u since u is real. Therefore

Uzz = Uzz

Taking complex conjugates we have

Uzz = Uyy (82)

From the definition of G

GW = o¢Nuz
— Nu.. by (82)
Putting this result in for G in (8.1) we have
2k, = hous +hus + (N -z )iz /W + 2(¢N). (8.3)
Take the dot product with u,. We find
kour = hou?+ huzus + (N - wz)u /W + (6N).u.

Since u? = 0 (that is the minimal surface equation) and consequently u,,u, = 0,
the first two terms vanish, and in the third term we have w,u, = W. Hence

kzuz = ¢Nuzz + (¢N)zuz
= ¢Nu,, + . Nu, + ¢N,u,
= ¢Nu,, + ¢N,u, since Nu, =0

= ¢(UZN)Z
=0 since u,N =0

We have proved k,u, = 0.
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Next we prove Ak = 0. It will suffice to prove Ak - N and Ak - u, are zero.
The latter of these is easily proved: Differentiate k,u, = 0 with respect to Zz.
Since u,z = 0, we find Ak - u, = 0. We now set out to prove Ak - N = 0.

Differentiate (8.1) with respect to z. We find

2Nk = (Ah)u, + hzu., + (Ah)u, + houzz + 20(oN) (8.4)
Take the dot product with N. We find
Ak-N = Re (hzu,, - N)+ A(¢N) - N.
Substituting hz = ¢uzz - N/W, we have
Ak -N = |u,.N[*?¢/W + A(¢N) - N. (8.5)

Now A(¢N) = NAG + ¢AN + ¢ N + ¢y N, and since N, - N = N, - N = 0,
we have

A(¢N)-N = A+ ¢AN - N.

By Theorem 26, we have AN = 2KW N. By hypothesis we have A¢p = 2K W ¢.
Hence A(¢N) - N = 4KW ¢, and equation (8.5) becomes

Ak-N = |u,, - N*?¢/W +4KW¢ (8.6)
We now claim
lu.. - N|* = —4KW? (8.7)

Once (8.7) is proved, (8.6) immediately implies that Ak - N = 0.

To establish (8.7), it will be convenient to use again coordinates a and b
such that at the fixed point z, we have N, = kiu, and N, = koup. In these
coordinates we have

0 [ ug 0 ( w
= N) = VW d —|—==-N|=0 8.8
a7 ) = w5 () (88)
Let v be the angle between the positive z-direction and the positive a-direction.
Then 9 9 9
From (8.8) we obtain
Uge - N = k1 W and Ugp - N =0 (8.10)
A straightforward calculation using (8.9) and (8.10) shows
Uy, - N = =2 W (8.11)

which establishes (8.7), and completes the proof that Ak = 0.
We have now proved that if & satisfies the equation in part (v) of the theorem,
then k is harmonic (except possibly at the singularites of h), is tangent to the
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boundary (except possibly at the boundary singularities of i), and satisfies the
kernel equation of D?E[u], again with possible exceptions at the singularities of
h. In order to show that the singularities of h do not pose a serious problem,

we define
n

H(z)= H(z —z)" (8.12)

i=1
where the z; are the branch points of u, and m; is the order of the branch point

z;. The equation h; = G is then equivalent to (hH):; = HG. The right-hand
side HG is real-analytic, since

HG = (Ho/W)(uz=-N)

_ SHHP O fuz
W 90z\ H N

in view of uz - N = 0; and the functions |H|*/W and uz/H are real-analytic.
In order to prove part (i) of the theorem, we now have only to solve the
Riemann-Hilbert system

(hH); = HG in D (8.13)
Re (ZHhH) = 0 on S! (8.14)

and verify that the solution is analytic up to the boundary. (We write the
solution as hH to conform with the notation of the theorem.) There are two
minor problems in solving this system. First, if there are boundary branch
points, H can vanish on the boundary, and Riemann-Hilbert systems are usually
considered only with a non-vanishing function in the place occuped by ZH in
(8.14). Secondly, the boundary regularity. The first difficulty is removed by
writing (8.14) in the form

Re (26hH) =0  where o0 = H/|H| (8.15)

We then must prove

— is real-analytic on S* (8.16)
|H|

It suffices to verify that H/|H| is real-analytic at the z;, which are the zeroes of
the denominator. By a rotation, we may assume without loss of generality that
2 = 1. Now let § be as usual (instead of as above) so that e parametrizes

S, With z = € and m; = 2m (remember boundary branch points have even
order), we have

22m(1+ 0(6)
r2m(1+ 0(0))

Z2m

- (1+0(0))

zmzm

H/|H| =
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_ ei@ 2m
B u—;;mgzeiqm@+OW»
_ eiG m
ﬁ(l +0(0))
(e 22sin(0/2)\"
- (Eﬁﬁiﬁﬂﬁﬁ) (1+0(0))

= ™1 +0()

which is a real-analytic function of §. Thus (8.8) is proved.

We shall now construct directly a solution of the Riemann-Hilbert pfoblem
(8.13), (8.15), rather than appeal to a reference at once. By first reducing the
problem to the existence of a suitable complex-analytic function, we reduce the
boundary regularity problem to a simple application of the reflection principle.

Lemma 19 Let a be a complez-valued function, real-analytic and never zero on
SL. Let o be a real-valued, real-analytic function on S*. Let N be the “character-
istic” of a; that is, the (algebraic) number of counterclockwise revolutions of the
vector (Re a, Im «) as St is traversed once counterclockwise. Then there exists
a complez-analytic function w, analytic in D, satisfying the boundary condition
Re (aw) = o on S', provided that N > 0.

Remark. The family of all solutions w forms a manifold of dimension 2N + 1.

Proof of lemma. This lemma (including the Remark) is almost a special case of
the theorem on p. 236 of [13]. The only difference is that the solutions w whose
existence is there asserted are only guaranteed to be continuous in D and C*
in D. Of course, the interior analyticity of solutions of the Cauchy-Riemann
equations is classical; but it remains for us to prove the boundary analyticity.
As is usual with boundary regularity theorems, we can prove a local boundary
regularity theorem. Namely, if w is analytic in a neighborhood V N D of a
point zp on S!, and satisfies Re (aw) = o on S* NV, where D is the unit
disk and V is a small disk about zj, then w is analytic in W N D for some
disk W about zy. To prove this, we first show that ¢ and & can be extended
to complex-analytic functions defined in some neighborhood W of z3. To do
this, let F' be a conformal tranformation from D to the upper half plane, with
F(29) = 0. Then oF~! is real-analytic on the z-axis, say cF~1(x) = Y a,a™.
Then Y a, 2" defines a complex-analytic extension of cF =1, and Y a,(F(2))"
defines a complex-analytic extension of ¢. Similarly for @. We denote these
extensions by the same letters as the original functions. Now Re (aw — o) =0
on STNW. Since aw — o is complex-analytic in DNW, we can apply the Schwarz
reflection principle. Hence aw — o is analytic up to the boundary. Since a does
not vanish on S!, w is also analytic up to the boundary. That completes the
proof of the lemma.

We now return to the proof of the theorem. By [ G(z,z) dz we mean V., /H,
where H is as above, a complex-analytic function such that HG is real-analytic,
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and V is a function such that AV = HG, for example,

V(z2) = / L HO)G(E. &) de dey  where €= & 1 &

plz—¢

Thus foz G(z,z) dz is some function whose derivative with respect to z is G.
We shall show that, in order to produce a tangent vector k as required in
part (i) of the theorem, it suffices to find a function A such that

Re (24) = —Re (2 /OZ G(z,2) dz) on S1 (8.17)

and A is meromorphic in D with HA analytic in D. Here H is as defined in
(8.12). For suppose we have an A as in (8.17). Then we define

h(z, %) :/O G(z,2)dz + A2). (8.18)
Then h: = GG and
Re (zh) = Re <z/z G(z,2) dz) + Re (24)=0  on S!
0

by the boundary conditions on A. Define & = Re (hu,) + ¢N. As we have
proved, Ak = 0 and k,u, = 0, away from the singularities of h. By (8.17)
and the analyticity of GH, hH is real-analytic in D. Now, in the vicinity of
the branch point z;, we have |hu,| < |h|er™ for some constant ¢, and |hH| =
|h]r™(1 4 O(r)), so |h|r™ = |hH|(1 + O(r)) < C|hH| in some neighborhood of
z;. Hence |hu,| < C|hH|. Tt follows that k is bounded in the vicinity of z;.
According to Theorem 4, if a function is harmonic and bounded in a punctured
disk, then the singularity is removable; hence k extends to a harmonic (vector-
valued) function defined in D. That completes the reduction of part (i) of the
theorem to the problem of finding an A as in (8.17).

Since B(z,z) = H(2)z [, G(z,%)dz is real-analytic in D, the problem of
finding A as in (8.17) is a special case of the following problem:

Let B be real-analytic in D. Find a function A meromorphic in D
such that H A is complex-analytic and Re (24) = Re (B/H) on S*.

We now show how to solve this problem. Define o« = zH/|H|. The characteristic
of a (defined in Lemma 19) is easily computed to be 1 plus the sum of the m;
for z; in D plus half the sum of the m; for z; on S*. Note that this number is
N such that 2N + 1 = M + 3, where M is the number of forced Jacobi fields.
By (8.16), « is real-analytic and non-vanishing on S'. Now apply Lemma 19
with 0 = Re (zaB) on S!. The result is an analytic function w such that
Re (aw) = Re (zaB) on S'. Now define A = w/H. Then A is meromorphic
and AH is analytic. We now verify that A satisfies the boundary condition in
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(8.18). Compute

Re (ZA) = Re (zw/H)

which is the value required in (8.18). This completes the proof of part (i) of the
theorem.

Part (ii) follows immediately from Tromba’s Lemma, since the difference of
two solutions of k- N =0 and k,u, = 0 satisfies k- N =0 and k,u, = 0, so by
Tromba’s Lemma it is a forced Jacobi or conformal direction. It is interesting
to note, however, how this comes out of the above analysis as well, since as
we have remarked, the family of possible solutions A has exactly the dimension
2N +1=M + 3.

Now we prove part (v) of the theorem. We have already proved half of it,
namely that any solution h of hz; = G in D and Re (zh) = 0 on S, such that
k = Re (hu.) + ¢N is bounded, gives rise to a solution k of k- N = ¢ with
k in KerD?FE[u]. Moreover, we have proved there exists such a solution hy.
Now let k be any tangent vector in KerD?E[u] with k- N = ¢. We must prove
k = Re (hu,) + ¢N for some h satisfying h; = G in D and Re (zh) = 0 on S*.
Let ko = Re (hou.) + ¢N. By part (ii), we have k = kg + k1, where k; is forced
Jacobi or conformal. Thus k1 = Re (h.u;), for hy meromorphic, have poles of
order at most m; at z;. Then k = Re (hu.) + ¢N, where h = ho + h1. The
boundary condition on h will be satisfied, since hg and h; separately satisfy it,
since ko and k; are tangent vectors. That proves part (v).

Now part (iii) is immediate. We have established that the map F : k — k- N
is a surjective linear map from KerD?E[u] to KerD?A[u], and has a kernel of
dimension M + 3.

Ad (iv). Write k in the form Re (hu,); any tangent vector k with k- N =0
can be put in this form for some C**# function h. We wish to prove h; = 0, i.e.
h is meromorphic, for then k is a forced Jacobi or conformal direction. Take
the dot product of equation (8.4) with u,, remembering Ak = 0, ¢ = 0, u? = 0,
and u,,u, = 0. We get

0 = hsussu,. (8.19)

We wish to show that hz vanishes identically. In that case w is conformally
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equivalent to a surface with u, = « for some complex constant vector «, and
u= Re (a)z + Im (a)y.

We begin by showing that the second factor in (8.19), namely uszzu., does
not vanish identically in any neighborhood V" unless u lies in a plane. Suppose
to the contrary that it does vanish in some neighborhood V. Then (|u,|?); =
(u,uz)z = u,uzz since u,; = 0. Hence if u,uzs is zero, then |u,|? is a constant;
hence |u.| is a real constant, say R. That is not enough to conclude that
u, is constant, since u, is a vector. We use the functions of the Weierstrass
representation, namely f = tu, —i?u, and g = 3u,/f. We have

AW = ff(1+g9)*

AW, = (1+g9)f(f.(1+g9) +2fg9-).

If this vanishes identically then f.(1 + gg) + 2fg¢g. vanishes identically. Since
u does not lie in a plane, g is not constant, so we can divide by fg,, obtaining
f2/(fg:) = —2g/(1 + ¢gg). But the left-hand side is meromorphic, while the
right-hand side definitely depends on Z. To prove this rigorously, differentiate
the right-hand side with respect to Z. We get a fraction whose numerator is gs.
Hence if the right-hand side is meromorphic, gz is identically zero; but then g
is constant; and by analytic continuation, it is constant not only in V' but in
the whole unit disk. Since g is the stereographic projection of the unit normal,
u lies in a plane, contradiction. Hence the zero set of the real-analytic function
uzzu, does not contain any neighborhood.

Now consider hz, which we want to prove is identically zero. Suppose to
the contrary that it is nonzero at some point zy. Since h is at least C!, hs is
continuous. Therefore, hz is nonzero in some neighborhood V' of zy. Since uzzu,
does not vanish in V', there is a point 21 in V where uzzu, is nonzero; but then
(8.19) yields a contradiction, since both factors on the right are nonzero at z;.
That completes the proof of (iv), and the proof of the theorem.



Chapter 9

Some Theorems of Tomi
and Bohme

9.1 Tomi’s no-immersed-loops theorem

In this section we prove a theorem due to Tomi [22], or maybe it is due to Tomi
and Bohme [5]. It is difficult to give an exact reference for this theorem as
the paper where it is stated [22] contains deeper theorems about the structure
of the solution set of Plateau’s problem, and the calculation needed for this
proof is referenced to [5] where, at the crucial point, the paper says “Durch eine
elementare aber etwas mithsame Rechnung finder man...” (by an elementary
but somewhat tiresome computation one finds). Anyway, we give a proof here,
but it may or may not be the proof Béhme and Tomi had in mind. Also, they
required the boundary to be C*<, but that was for other reasons in their paper;
C? is enough for the theorem stated here.

Theorem 31 Let I' be a C? Jordan curve and suppose u = u(t) is a periodic
one-parameter family of minimal surfaces, C* as a function of z and C* in t,
bounded by I' for each t, and satisfying a three-point condition. Suppose that
ut s not identically zero as a function of z for any t, and that each u(t) has
Amin = 2. Then some u(t) has a branch point, either in the interior or on the
boundary.

Remarks. By a “periodic family”, we mean that u(t + 2m) = wu(t); the exact
period is not relevant. The condition A\pin = 2 will be fulfilled if u(t) is a relative
minimum of area, but it is a more general condition. The condition that the
u(t) satisfy a three point condition is only needed to guarantee that u; is not a
conformal direction.

Proof. Suppose, for proof by contradiction, that u(t) has no branch point. Since
each u(t) is a minimal surface, the first variation of Dirichlet’s integral E is zero,
so E(t) = E[u(t)] is constant. Hence the second derivative 9*E/9t? = 0. Hence
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the second variation of F is zero in the direction u;. That is,
D?Elu](ut) =0

Define
¢ :=us- N

where N is the unit normal to u(t). (We suppress the ¢-dependence in our
notation, writing u instead of u(¢) and not indicating the t-dependence of ¢ and
ut.) Because there is no branch point, there are no forced Jacobi directions.
Because of the three-point condition, u; is not a conformal direction. Then
D?[A](¢) = 0 as shown in the previous section. Since u has no branch points,
¢ is not identically zero. By Theorem 29, ¢ is an eigenfunction of

Ap=2KW¢

over the parameter domain D, with ¢ = 0 on the boundary 0D. We define the
“volume integral” to be

V(t) :z/u-(umxuy)d:vdy = /u-NWd:vdy
D D

where N is the unit normal to u. The key to the proof is the “mithsame Rech-

nung” that
oV

8—T=V}:/¢dedy

We first finish the proof and then return to that computation. Since by hy-
pothesis A\pin = 2, for each ¢ the function ¢ = ¢(t) has only one sign in the
interior of the parameter domain. Since ¢ is continuous in ¢ (because u is C! in
t), that sign is the same for all ¢ in [0, 27]. Now choose to at which V(t) has its
minimum value. Then we have

0 = Vi(to)
= /ut-Ndedy

j[¢ﬂ/dxdy

But since ¢ is not identically zero and has one sign, this is a contradiction. That
reduces the proof to the computation of V;(¢(), which we now undertake.

We may assume (by replacing ¢ by t —to mod 27) that to = 0. The functional
V(t) is invariant under reparametrization of u. For sufficiently small ¢ we can
find a reparametrization of u(t) in the form

i(w,y) = u(@,y) +teN(z,y) + O(t)

where v and N on the right correspond to ¢ = 0. The surfaces u(t) are not
necessarily harmonic except when ¢ = 0. We have

Uy = Ugp+t(peN + ON,) 4+ O(t?)
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iy = uy+t(yN +oN,) + O(t?)
Up X Uy = Uy X Uy +tuy X (0yN + ONy) + tuy X (9o N + ¢N)
Ny = biiug + biouy
N, = biaug + basuy
Uy X Ty = Uz X Uy + tug X (dy N + basdy) — tuy X (¢ N + biiduy) + O(t?)
Uy X N = —uy
Uy X N = uy,
Uy XUy = NW
fiy X Uy = Uy X Uy +t(—Pyty + b NW) — t(Bgpuz — bi1dNW) + O(t?)

= Uy X Uy + t(—Pyuy) — t(Paug) + O(t?) since b11 + by =2H =0
= Uy X Uy — Hdyuy + drug) + O(t?)

We have
Vi) = /a (Ug X Uy) dedy
= [ 10N + OO %y (g, + 621,) + OF)) dody
Extracting the t term we have
V) = [oN: (o xu)dody— [ u- (g, + bus) dudy
= /(bW dxdy — /u (Pyuy + Gzuy) drdy

The first term is the desired value of V;(0). It therefore suffices to show that
the second term vanishes. By the mean value theorem of integral calculus,
there exists for each i = 1,2,3, a value ‘2 such that with ‘4 = wu(‘2), where

u = Yu,%u,3u, and @ = (14, %4, 30), we have

/ﬁw%%+@MMMy: w/wwwwwumw
= ﬁ-/V(qudxdy

Now, applying Green’s theorem (“integrating by parts”),

oD D

The second term vanishes since Au = 0, and the first term vanishes since ¢ is
zero on the boundary. Hence, as claimed, the left side is equal to zero. That
completes the proof of Tomi’s theorem.



96 CHAPTER 9. SOME THEOREMS OF TOMI AND BOHME

Theorem 32 (Tomi’s theorem for other topological types) LetT be a union
of finitely many Jordan curves, and let u(t) be a periodic family of orientable
minimal surfaces defined in the same parameter domain D and bounded by T,

C? in z and C' in t, each with Amin = 2, and suppose that u; is never a con-
formal direction and never identically zero. Then one of the surfaces u(t) has a
branch point.

Proof. Because u(t) is orientable, we can find a unit normal N defined on the
whole surface. The computations in the previous proof then work just as well,
though the integrals have to be rewritten as integrals over the surface, or taking
the parameter domain to be a Riemann surface. If u(t) is not connected, we
apply the argument separately to each connected component, so without loss
of generality we can assume u(t) is connected. That enables us to conclude
that the first eigenfunction (the one associated to the last eigenvalue) has a
one-dimensional eigenspace and hence just one sign. That completes the proof.

Remark. The simplest case not covered by Tomi’s theorem is the case of Jordan
curve (possibly) bounding a periodic one-parameter family of minimal surfaces
of the type of the Mobius strip. Nobody has ruled this possibility out, even if all
the surfaces are absolute minima of area. The least eigenfunction of a Mdbius
strip has two signs.

Remark. In a subsequent section, we show how Tomi and Béhme used their
structure theorem about the set of minimal surfaces bounded by I' to weaken
the hypothesis of the theorem. It is only necessary to suppose that one of the
surfaces u(t) has Apin = 2 and is not isolated; then a one-parameter family of
surfaces u(t) exists, depending analytically on ¢, such that u = u(0) and some
u(t) has a branch point.

9.2 Bohme and Tomi’s structure theorem

Let T be a C*® Jordan curve. Let M be the space of minimal surfaces bounded
by I' (with the C*% metric).

In [5] and [22], Bohme and Tomi prove that the space of minimal surfaces
bounded by I' near a relative minimum w is one-dimensional. Specifically this
is stated in Lemma 3 of [22], whose proof depends on [5]. Tomi states it only
for relative minima of area, but proves it for minimal surfaces with A, = 2,
as in the following statement.

Theorem 33 Let u be a minimal surface bounded by I' with Apmin = 2. Suppose
u is not isolated. Then there is a neighborhood of w in M whose intersection
with M is a one-parameter family u(t) defined for some open interval of t-values
containing 0, with u(0) = u.

Boéhme and Tomi proved a structure theorem about the space M of minimal
surfaces bounded by ', without (interior or boundary) branch points. According
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to this structure theorem, the space is, in the neighborhood of any particular
minimal surface u, a finite-dimensional manifold. In particular, Lemma 3 of [22]
(whose proof depends also on [5]), states that if u is a relative minimum of area
then the space M near u is a one-dimensional manifold; Tomi gives an explicit
chart for this manifold in the form

u(t) = (u+ (¢t + O(t*)) - N)) oo

where ¢ is a diffeomorphism of the parameter domain D designed to ensure
that u(¢) is harmonic and isothermal. In particular u;(0) is not identically zero.
Although Lemma 3 hypothesizes that w is a relative minimum, that hypothesis is
only used to conclude A\pin = 2 (or zero for Tomi’s formulation of the eigenvalue
equation), at the bottom of page 315 of [22]. Note that u(t) depends analytically
on t.

9.3 Tomi’s Finiteness Theorem

Theorem 34 (Tomi) Let T' be a C** Jordan curve and let u be a relative
minimum of area bounded by I'. If u is not isolated, then there exists a one-
parameter family u(t) of minimal surfaces bounded by I, defined for t in some
interal [0,D), such that u(t) is a relative minimum for t > 0, but u(0) has a
branch point.

Proof. Tomi’s structure theorem in the preceding section gives us a family u(t)
defined for some interval of t-values, with u = «(0). Then 2 is an eigenvalue of
each u(t) and A(u(t)) is constant. Since the least eigenvalue depends continu-
ously on u, and hence on ¢, we have A\, = 2 for all ¢ for which u(t) is defined.
Consider the set @ of ¢ for which the family u; can be analytically continued to
an open neighborhood of ¢ and for which Ay, = 2. This set is open by Tomi’s
structure theorem . We claim it is also closed. Let s be a boundary point of
Q; then consider a sequence t,, of members of @) converging to s. Then wu(t,)
has a subsequence that converges to a minimal surface; call that surface u(s);
and by the continuity of Amin, Amin = 2 for this surface. If u(s) has a branch
point, we are finished (after replacing ¢ by s — ¢ or t — s put the branch point at
t = 0.) Hence, we may assume that u(s) does not have a branch point. Then
by Tomi’s structure theorem, the minimal surfaces bounded by I" close to u(s)
form a one-parameter family; this family must include the wu(¢,). Hence the
one-parameter family does extend to u; analytically. Hence @ is both open and
closed; the one-parameter family u(t) is thus defined for all ¢.

Now we have a differentiable map of R into a compact space (a subset of
M) whose derivative is never zero and whose image is closed, and every point
of the image has a neighborhood in which the range is one-dimensional. An
elementary argument shows that the map must be periodic. Here are the details:
By compactness, the surfaces u(0), u(1),u(2) ... have a convergent subsequence,
converging to some minimal surface w. Again, Apn = 2 for this surface, and
hence by Tomi’s lemma the minimal surfaces near w form a one-parameter
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family; hence w = u(tp) for some tg. Let j < to < j+ 2 for some integer j; then
for some k > j + 2 we have t; between j and j + 2, so the path u(t) contains a
loop, i.e. it is periodic. Then by Tomi’s no-immersed-loops theorem, Theorem
31, some u(s)) has a branch point. Replacing ¢ by s — ¢ or ¢t — s, we bring the
branch point to t = 0. That completes the proof.

Theorem 35 (Tomi) Let I' be a real-analytic Jordan curve. Then T' does not
bound infinitely many absolute minima of area.

Proof. Suppose I' does bound infinitely many absolute minima of area. Then
there is, by compactness, a minimal surface v bounded by I' that is a limit
of absolute minima. Hence u is also an absolute minimum of area. Hence,
by the previous theorem, there is a one-parameter family of minimal surfaces
u(t), all of which are absolute minima, and some u(¢) has a branch point. But
this contradicts known regularity results, since I' is real-analytic and u(t) is an
absolute minimum.

Remark. Note that the proof does not work for relative minima instead of
absolute minima. With relative minima for ¢ > 0, there is no reason why u(0)
has to be a relative minimum; we only get that «(0) must have a branch point.
This is the starting point of my work on finiteness in Plateau’s problem.
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