A Second-order Theorem Prover applied to
Circumscription

Michael Beeson

Department of Mathematics and Computer Science
San Jose State University

Abstract. Circumscription is naturally expressed in second-order logic,
but previous implementations all work by handling cases that can be re-
duced to first-order logic. Making use of a new second-order unification
algorithm introduced in [2], we show how a theorem prover can be made
to find proofs in second-order logic, in particular proofs by circumscrip-
tion. We work out a blocks-world example in complete detail and give the
output of an implementation, demonstrating that it works as claimed.

1 Introduction

Circumscription was introduced by John McCarthy [10] as a means of formalizing
“common-sense reasoning” for artificial intelligence. It served as the foundation
of his theory of non-monotonic reasoning. The essential idea is to introduce,
when axiomatizing a situation, a predicate ab for “abnormality”, and to axiom-
atize the ab predicate by saying it is the least predicate such that the other
axioms are valid. Some other predicates may be allowed to “vary” in the mini-
mization as well. There are several technical difficulties with McCarthy’s idea:
First, the circumscription principle is most naturally expressed in second-order
logic, where we have variables over predicates of objects. Second, unless the rest
of the axioms contain ab only positively, the circumscription principle is not an
ordinary inductive definition, and there may not even be a (unique) least solu-
tion for the ab predicate, so the circumscription principle can be inconsistent.
McCarthy’s ultimate goal was implementation of software using the circumscrip-
tion principle to construct artificial intelligence. Believing that implementation
of second-order logic was not a practical approach, many researchers have tried
various methods of reducing special cases of the circumscription principle to
first-order logic; see [6] for a summary of these efforts. Some of these reductions
were in turn implemented.

In this paper we take the other path, and exhibit a direct implementation of
second-order logic which is capable of handling some circumscription problems.
The key to making this work is a new notion of second-order unification. This
notion of unification was introduced in [2], where some theorems about it are
proved. In that paper, I pointed out the possibility of converting your favorite
first-order theorem prover to a second-order theorem prover by adding second-
order unification. This paper shows explicitly how this can be done, and that the

II

resulting second-order prover can indeed find circumscription proofs. Note that
it would already be interesting if the resulting proof-checker could accept and
verify circumscription proofs, but the essential point of this paper is that the use
of the new unification algorithm of [2] enables a simple theorem-prover to find
circumscription proofs by itself. The hard part of this, of course, is finding the
correct values of the second-order predicates involved. These are generally give
by A terms involving an operator for definition by cases. It is therefore essential
to use a formalization of second-order logic which has terms for definition by
cases.

Although we have used a specific first-order prover in this exercise, we make
no claims about the value either of this particular prover or of the backwards-
Gentzen approach that it uses. We believe the same results could be attained
with any medium-to-good quality first-order theorem prover, suitably extended
to second-order by implementing the new unification algorithm. We just used
the theorem-prover we have, in order to demonstrate that this approach works.

On the other hand, it may not be completely trivial to add the new unification
algorithm to an existing resolution-style prover such as Otter. Note that in such
provers, “variable” means what we here call “metavariable”, and our “object
variables” are just constants. In such provers, there is no notion of a “restriction”
that prevents unification from making the value of a variable depend on certain
constants. In a Gentzen-style prover, when we prove IxVyP(x, y), we try P(X,y)
after restricting X to not depend on y. In resolution provers, this is handled by
Skolemization, so that when we prove 3aVyP(x,y), we replace y by g(x) and
try to refute = P(x, g(x)). Then the occurs check prevents the eventual value of
z from depending on y. The expression g(x) functions essentially as a variable
1 whose presence causes x to not depend on y. Our new unification algorithm,
however, calls for introducing new variables dynamically and restricting their
eventual values. Thus it is not just a matter of adding a few lines to Otter’s
unification code to make this work with Otter. However, it is certainly possible.

2 Definitions

2.1 Syntax of second-order logic

Second-order logic refers to a system in which we have two kinds of variables,
object variables and predicate variables. We write lower-case letters x, v, ... for
object variables and upper-case letters X, Y, ... for predicate variables. Similarly,
we have object terms and predicate terms. The term formation rules are as
follows:

Variable:= ObjectVariable | PredicateVariable

BinaryConnective :- V | A | —

ListTerm := [ObjectTerm] | [ObjectTerm | ListTerm]
VarList := [ObjectVariable] | [ObjectVariable | VarList]
ObjectTerm := FirstOrderTerm | ApplicationTerm

ApplicationTerm := ap(PredicateTerm, ListTerm)

11T

PredicateTerm := LambdaTerm | PredicateVariable | PredicateConstant
LambdaTerm := (\ VarList. Formula)
Formula := AtomicFormula | (Formula BinaryConnective Formula) |

(= Formula) | CaseTerm | V Variable . Formula
CaseTerm:= d(ObjectTerm , ObjectTerm , PredicateTerm, PredicateTerm)

Note that function symbols taking predicate arguments are not legal. There
can be function symbols, as usual in first-order logic, but they take only first-
order arguments.

As usual, [x1,...,x,] abbreviates [zq]|[xe,...,z,]]. Each ListTerm has a
unique length 7. An AtomicFormula is an expression of the form P(z), where P
is a predicate term of arity n and z is a list term of length n. In case P is a predi-
cate constant, we consider P([x1,...,Z,)]) to be the same as the usual first-order
term P(zxy,...,xy,). For the preceding to make sense, we must define the arity
of each predicate term. This is simply the number of its free object variables. In
the usual way, we can associate to each predicate or object term a list of its free
variables (in a specified order). The syntax rule for ApplicationTerm is then
subjected to the restriction that ap(P, z) can be formed only when the length
of the list z is equal to the arity of P. variables are bound by the X\ operator in
the usual way. Thus for example A\z.P(x,y) is a predicate term of arity 1. We
can therefore form the object term ap(Az.P(z,y), c).

We include two predicate constants of arity 0, namely true and false. The
above rules then make these two into atomic formulae as well. The use of true
and false is primarily a matter of notational convenience; false in the succedent
is traditionally written as an empty succedent. We could regard —A as an abbre-
viation for A — false, but it is convenient to retain both notations. However,
we allow —A and A — false to unify.

ap(X, z) can be abbreviated in writing as X (z), although in implementations
it is maintained, and is printed in the output of our prover. Note, though, that
predicate symbols P (constants) of the language are used in the usual first-order
syntax P(z), rather than ap(P, x).

Second-order unification, and its application to circumscription, both depend
on the use of conditional terms, or case-terms. These are terms of the form

There are several different notations for such terms in use, including the form
used in the C and Java programming languages:

rx=y?7Px) : Q)
and the form used in [2] and in the theories of Feferman [1]:
d(z,y, P(x), Q(x)).

The form with d is the one that has been given in the official syntax above, but
the other two forms are both more readable. The syntax used by our computer

v

implementation allows a more general kind of case term in which there can be
several cases, instead of just one, before the “otherwise” term. For representing
such terms the notation with a brace is more readable, so the output of the
prover is presented in that notation. For writing papers, the notation with a
question mark is more compact and equally readable, so we will use it in the
paper.

We note that everything in this paper applies equally well to higher-order
logic. This system would allow terms of every finite type. We can then use the
device of “currying” to eliminate the need for list terms: instead of ap(P, [z, y])
we would use ap(ap(P,x),y). We then have to define the rules for assigning
types to terms, and extend the definition of case terms. In case terms, the first
two arguments are still restricted to type 0. This is one of the systems that
has been used in [2]. (The other is a more general untyped system called A-D.)
Second-order logic is essentially the type-2 subsystem of higher-order logic. Since
second-order logic suffices for circumscription, we work in that system.

2.2 Axioms and rules of second-order logic

We use a Gentzen-sequent formulation of second-order logic. We simply take the
usual Gentzen rules (e.g. G3 as in [8]) for both predicate and object quantifiers.
The G3 rules need to be supplemented with rules corresponding to the formation
of M-terms and ap-terms, as well as with rules corresponding to the introduction
of case terms in both antecedent and succedent. We do not repeat the G3 rules
here, but here are the other rules:

t=s, A=C I" t+s, B I'=C
d(t,s, A, B)), '=C

t=s=A

I'=d(t, s, A, B))
t+s=>B

I'=d(t, s, A, B))

I'=Alt/x]

I'=(\x.A)t

I, Alt/x]=¢

I Oz A)t=6

These last rules allow us to rewrite terms by beta-reduction when searching in
“backwards-Gentzen” style for a proof, both in the “assumptions” (antecedent)
and the “goal” (consequent). With regard to equality reasoning, we can either
include Gentzen-style equality rules, or we can simply regard the equality ax-
ioms as part of the axioms I" of the theory in question. In our implementation,
there are certain methods that find proofs involving equality which could be in-
terpreted in either system, but actually do not follow either one very closely. As
is well-known, equality reasoning offers difficulties for automated deduction, but
these difficulties are not directly relevant to the topics discussed in this paper,

v

except of course that the first-order aspects of the prover must be good enough
to deal with the equality reasoning required in the circumscription examples.

2.3 Circumscription

If U and V are predicate expressions of the same arity, then U < V stands for
Ve(U(x) — V(x). U = Uy, ..., U, and V = Vp,...,V,, are similar tuples of
predicate expressions, i.e. U; and V; are of the same arity, 1 <i<n,thenU <V
is an abbreviation for Al (U; < V;. We write U =V for U <V AV < U, and
U<ViforUSVA-VSU.

Definition 1 (Second-Order Circumscription). Let P be a tuple of distinct
predicate constants, S be a tuple of distinct function and/or predicate constants
disjoint from P, and let T(P; S) be a sentence. The second-order circumscription
of P in T(P;S) with variable S, written Circ(T; P; S), is given in [6] as

T(P; S) AVOU—[T(D,W) AW < P]

where @ and ¥ are tuples of variables similar to P and S, respectively. This can
equivalently be stated in the form

T(P;S) AYOW[T(®,W) AW < P — P < W),

which is the form our prover uses.

3 Unification

In this section, we recall the notion of unification introduced in [2].

3.1 Metavariables

A metavariable is a variable (not part of the formal language) ranging over terms
of the formal language. Metavariables are used in a theorem prover to stand tem-
porarily for terms whose values will eventually be determined. Unification is the
means by which the values are determined. For example, when the prover tries to
prove Y A(Y), a new metavariable Z is introduced and the goal becomes A(Z).
We use boldface letters for metavariables, since the distinction between lower
and upper case is already used for something else. In comparing [2] with this
paper, it should be understood that the “variables” of [2] are the metavariables
of this paper, and the “constants” of [2] are the object and predicate variables
(and the constants) of second-order logic.

VI

3.2 Restrictions and Environments

A restriction is a pair consisting of a metavariable and a (possibly empty) list
of (object or predicate) variables. (Intuitively, the eventual value of the variable
is not allowed to depend on the members of the list.) An environment is a
finite list of restrictions. (Intuitively, an environment lists all the variables in
use so far, whether or not their eventual values are restricted, together with any
restrictions so far imposed.) If {Z,r) is a member of the environment E we say
that the variable Z occurs in E or is mentioned in F, and that all the members
of the list r are forbidden to Z in FE. We say a compound term t is forbidden
to Z in E if it contains a free occurrence of any constant that is forbidden to Z
in E. A substitution is a function from metavariables to terms. The substitution
o 18 legal for environment E provided o(Z) is defined for all Z that occur in
E and that 0(Z) does not contain free occurrences of any variable or constant
forbidden to Z in E. The substitution ¢ unifies terms t and s relative to E if for
some substitution y whose restriction to E is the identity, we have toy = soy.!

3.3 Definition of unification

The inputs to the unification algorithm are two terms ¢ and s to be unified and
an environment E. We say that ¢ and s are to be unified “relative to” the en-
vironment E. One output of the unification algorithm is a substitution ¢ which
is legal for FE, such that {0 = so. The usual notion of unification is obtained by
taking an environment F with no restrictions on any of the variables occurring
in E. But note that the use of restrictions, even in first-order unification, cor-
responds to the actual use of unification in theorem-proving, where for example
when we try to prove I'=3Y A, we introduce a new metavariable Z with the
restrictions that its ultimate value cannot depend on variables bound in A, I'.

The unification algorithm has a second output, which is a new environment
(possibly) enlarging the input environment E. Here “enlarging” means simply
that new variables may have been added.

The key new clauses in the definition of unification are these:

To unify Z(t) and S, where t and S are not forbidden to Z, we take Z =
Axd(x,t, S, Zzx). Here Z is a new metavariable. The output environment includes
Y. The variables forbidden to Z are the ones forbidden to Z.

To unify X (t1,%2) and S, where #1,%5 and S are not forbidden to X, we take

X = Axyxo(d(zy, 11, d(xo, to, 5, Zox), Zy)

where Zy and Zs are new metavariables, and similarly for unifying X (¢1,...,%,)
and S.

If S is a term containing a variable z forbidden to X, to unify Xz and S,
we take Z = A\z.(S' V Zz). The variable z will be forbidden to Z in the output
environment, along with any other variables forbidden to X.

! That is, to = so for some values of the the variables not in F.

VII

The other clauses in the definition of unification are of two kinds: First, there
are clauses similar to those for Robinson’s original unification, but it should be
noted that in the main recursive clause, where unification is applied successively
to the arguments of a term, the output environment from each recursive call is the
input environment when unifying the next argument. Second, there are clauses
designed to ensure that terms which can be reduced (either by S-reduction or
d-reduction) are reduced before the above rules are applied. For the details, see
[2]. The rules given here should be sufficient to understand the applications to
circumscription.

For example, if we want to unify Z(c) with false, we will get

Z = x.(x =c? false : Z(x))

which intuitively says that Z(c) should be false, but on all values of z different
from ¢, X(z) is undetermined. The use of a new metavariable expresses “unde-
termined”.

Remark. In [2], it is proved that with respect to this notion of unification, unique
most-general-unifiers exist, just as they do for Robinson unification in first-order
logic. We want to take this opportunity to explain how this result reconciles
with the well-known fact that there is no unique unifier for Huet’s notion of
A-unification. Here is the statement of the most-general unifier theorem from

[2]:

Theorem 1 (Most general unifier). Let E be an environment. Suppose that
p and q are normal terms in AD. Suppose that for some substitution 0 legal for
E, pf and 0 are identical. Then p and q unify, and the answer substitution is
legal for F, and more general than 6.

The point is, that the conclusion would not be valid if we replaced the hy-
pothesis “pf and ¢f are identical” by the hypothesis “pf and ¢f have a common
reduct.” Huet’s terms with many unifiers do not form a counterexample to the
theorem.

4 Blocks World Example

We treat the first example from [6] as a typical circumscription problem.
Let I'(Ab, On) be the theory

¢ # b A —=0n(c) AVzx(—ab(x) — On(x))

where the variables range over “blocks” and On(x) means “r is on the table”.
Circumscription enables us to conclude that a is the only block not on the table.
For simplicity, we first consider the problem without the predicate B, i.e. we
assume all variables range only over blocks. The idea is that normal blocks are
on the table, and since ¢ is the only abnormal block, b is a normal block and
hence is on the table. Circumscription should enable us to prove On(b).

VIII

Circumscription in this example is taken to minimize ab with variable On,
so in the general schema above, we take P to be ab and S to be On.

c£b

Va(—ab(x) — On(x))

-0n(c)

VOUNr(—W(x) — P(x)) AN—=DP(c) AT < ab — ab <]

)
2
3)
1)

NN N~
~—

We first present a human-produced proof, for later comparison to the proof
found by our program. We take as the goal to prove On(b). Backchaining from
(2) produces the new goal —ab(b). The human then suggests the values

¥ = Mx.(x = ¢ ? true : false) (5)
@ = \x.(x = ¢ 7 false : true) (6)

With these values of @ and ¥, we want to prove ab(b) — false, so we need to
verify ¥(b) = false. But ¥(b) = (b = ¢ ? true : false), and b = ¢ evaluates to
false since b # c is in the antecedent, so ¥(b) evaluates to false. It therefore
suffices to verify the hypothesis of (4), namely

V(¥ (x) — $(x)) A —P(c) AT < ab.

Fix an x, and suppose =¥ (z). Then x # ¢, from which @(z) follows, which proves
the first conjunct. The second conjunct, —@(c), follows immediately by reduction
to true. The third conjunct, ¥ < ab, is proved as follows: suppose ¥(z). Then
xz = ¢ and so we must prove ab(c). But by (3) we have =On(c), and so by (2) we
have ab(c). That completes the proof.

We now explain how the prover attacks this problem. We want to prove
—ab(b). (Officially that goal is the succedent of a sequent whose antecedent is the
list of axioms.) So the prover assumes ab(b), and the new goal is ab(b)=-false. (Of
course officially the axioms should appear in the antecedent of the goal sequent,
too, but we do not write them.) This causes (3) to be “opened up”, introducing
metavariables P and Q. The formula ab < Q is really Vw(ab(w) — Q(w)),
so a metavariable W is introduced for w as well, but soon it is instantiated
to b to unify ab(b) with ab(W), in the hopes of proving ab(W)=Q(W) from
ab(b)=false. Thus the prover tries to unify Q(b) with false. This gives

Q= y.(y=07false: Y(y))

where Y is a new variable. The next goal is the conjunction of the three formulae
on the left of the implication in 4. These are taken in order; the first one is
Yo(—Q(v) — P(v)). Fixing v the goal is =Q(v) — P(v); writing out the current
value of Q and S-reducing, the goal is

—(v="0 7 false : Y(v)) — P(v)
There is a simplification rule for pushing a negation into a cases term, namely

—(v=p?q :r)=(=p7q :-r).

IX

So the goal becomes
(v=">07 true: =Y (v)) — P(v).
This is solved by second-order unification, taking
P = Mv.((v =07 true : =Y (v)) V Zv).
The next goal is =P(c). That is, after a beta reduction,
=((c=0 7 true: =Y(c)) vV Z(c))).

Now we can apply a simplification rule using the axiom ¢ # b, reducing the
cases term to =Y (2) and hence the whole goal to =(—=Y (¢) V Z(c)). Using rewrite
rules appropriate to classical logic we simplify this to Y (z) A—=Z(c). Splitting the
conjunction into two subgoals, the first one to be proved is Y (¢). This is solved
by second-order unification, taking

Y = du.(u=c? ab(b) : A(u))

where A is a new metavariable. You might think we should get true in place of
ab(b) in the value of Y, but when the prover has to prove a goal of the form Y '(¢),
it does not try to unify Y'(¢) with true, but rather with one of the assumptions
(formulas in the antecedent). It tries the most recently-added ones first, and it
finds ab(b) there, which explains the value given for Y.

The second goal is =Z(c). Then Z(c) is assumed, leading to a goal Z(c)=-false.
Unifying Z(c) with false gives Z the value

Z = Ar.(r=c¢? Onlc) : B(r)),

where B is a new metavariable. Again, you might expect false to occur in place of
On(c) in the value of Z, but the prover finds the value given, which is equivalent
since =On(c) is an axiom.
At this point, the values of P has become
P= 1 v.(v=">07true: -(v=c? true: A(z)
which simplifies to
P= > v.(v=>07true:v=c?On(c):-A(z2))
The value of Q is now given by
Q= My.(y=107?false : (Mu.(u=c? ab(b) : A(w)))y)

which reduces to

Q= y.(y="07false:y=rc?abb): Aly))

X

The next goal is Q < ab, that is Vz(Q(z) — ab(z)). Fixing z, the goal is Q(z) —
ab(z). Using the Gentzen rule for introducing — on the right, and writing out
the current value of Q, our goal is the sequent

z=>b7false: z=1c? a(b) : W(x)=ab(x).

This is proved by cases, specifically by the cases-left rule.
Case 1, z = b. The goal reduces to false — ab(z) which is immediate.
Case 2, z # b and z = c. Then Q(a) reduces to

z=cAz#£bAab(b)

so the goal becomes

z=¢, z#b abb)=ab(z).
The human can note that ab(c) follows from Vz(—ab(z) — On(x)) and -On(c),
and from ab(c) the goal follows quickly. This is a relatively simple problem in
first-order logic with equality, the difficulties of which are irrelevant to circum-

scription and second-order logic. Weierstrass is able to prove the goal.
Case 3, z #£ b and 2z # ¢. Then Q(z) reduces to W(z), so the goal becomes

W(z)=ab(z).
This goal is proved by instantiating the metavariable W:
W = A\z.(ab(z) V T(2))
where T is a new metavariable. The final values of P and Q are thus
P=>v.(v=>07true:v=c?On(c): (—ab(v) A —=T(v)))

Q= y.(y=0b7false:y=c7?a(d): (ably) VT(y)))

To achieve the stated goal On(b), the prover has only needed to deduce that b
is not abnormal. Unlike the human, it has not gone ahead to deduce anything
about other objects than a and b— the uninstantiated metavariable T' remains as
“undetermined”. Of course, the constant b might as well have been a variable;
the prover can prove Vz(x # a — On(zx)) just as well as it can prove On(b). But
that proof, like the one above, will still use instantiations of P and Q involving
free metavariables.

5 The automatically-produced proof

Here we present the proof as produced (and typeset) by our prover. In this proof,
a(x) stands for ab(x), meaning “r is abnormal”. On(x), meaning “z is on the
table”, is represented by o{x).

The goal is o(b)
Trying —(a(X))

Assuming a(X)

Trying for a contradiction
Trying left-arrow
Assume

Vw(a(w) — ap(Q, w))
Still trying false
trying second-order unification (clause 1) on

ap(Q, W) = false

The metavariable gets the value

0=\ { false if y=W

ap(Y,y) ow

Trying a(WW)
Aha! we have (1)
Success
Success
Discharging
Vao(a(w) — ap(Q, w))

Trying

Yo(=(ap(@; v)) — ap(P,v)), ~(ap(P, ¢)), Vz(ap(Q; 2) — a(2))

Trying
Vo(=(ap(Q,v)) — ap(P,v))

Trying
—(ap(Q,v)) — ap(P,v)

That reduces to:

true if v=0»
{ ~(ap(¥ir)) 0w i)

Assuming

XII

Trying ap(P, v)
trying second-order unification (clause 2) on

true if v=0»
ap(P’”){ ~(ap(¥i2)) 0w

The metavariable gets the value

true if wv=0»
P=Xuv [{ (ap(Y,v)) ow ,ap(Z,v)

Aha! we have ap(P,v)
Success
Discharging
Success
Success
Trying
~(V(=(ap(Y;), ap(Z,)

Classically, it would suffice to prove:

ap(Y, C)v ﬁ(ap(Z, C))

Trying ap(Y, c)
trying second-order unification (clause 1) on

ap(Y, ¢) = a(X)

The metavariable gets the value

N a(b) if wu=c
Y=)\u.{ ap(4,u) ow

Aha! we have ap(Y, ¢)

Success

Trying =(ap(Z, c))

trying second-order unification (clause 1) on ap(Z, c) = o(c)
The metavariable gets the value

N o(c) if r=c
Z =)\T'{ ap(B,r) ow

XIIT

Aha! we have —(ap(Z, ¢))

Success
That was the last conjunct, so the conjunction is proved.
Success
Trying
false if y=0
Yz (ap()\y.{ a(b) if wu=c ,Z) — a(z)>
ap(Au. ap(A.u) ow ,Y) ow
Trying
false if y=0
ap()\y.{ a(b) if uwu=c ,2) — a(z)
ap()\u.{ ap(A.u) ow ,Y) ow

That reduces to:

false if z=b
{ a(b) if z=c—a(2)
ap(4,2) ow

Assuming

false if 2=0
{ a(b) if z=
ap(4,2) ow
Trying a(z)
Trying left-arrow
Assume

Vw(a(w) — ap(D,w))

Still trying a(z)

Failure

Discharging

Discharging

Proceed by cases:

Case l:2 =10

Then we have false
Trying a(z)
That case cannot occur
Case succeeded

XIv

Case 2:z = ¢
Then we have a(b)
Trying a(z)
Trying left-arrow
Assume

Vw(a(w) — ap(D,w))

Still trying a(z)
Failure
Discharging
Discharging
Trying proof by contradiction of a(z)
Assume —(a(z))
By axiom ¢2, it would suffice to prove —(a(C'))
Trying —(a(C))
Aha! we have —(a(C))
Success
Case succeeded
Case 3:otherwise
Trying a(z)
trying second-order unification (clause 2) on

ap(4, z) = a(2)

The metavariable gets the value

A= XzV(a(z),ap(D, 2))

Aha! we have a(z)
Case succeeded
Proof by cases succeeded
Success
Discharging
Success
Success
That was the last conjunct, so the conjunction is proved.
Success
Success
Success
Success. That completes the proof.

XV

References

10.

11.

. Beeson, M., Foundations of Constructive Mathematics, Springer-Verlag, Berlin/

Heidelberg/ New York (1935).

. Beeson, M., Unification in Lambda Calculus with if-then-else, in: Kirchner, C.,

and Kirchner, H. (eds.), Automated Deduction-CADE-15. 15th International Con-
ference on Automated Deduction, Lindau, Germany, July 1998 Proceedings, pp.
06-111, Lecture Notes in Artificial Intelligence 1421, Springer-Verlag (1993).

. Beeson, M., Automatic generation of epsilon-delta proofs of continuity, in: Calmet,

Jacques, and Plaza, Jan (eds.) Artificial Intelligence and Symbolic Computation:
International Conference AISC-98, Plattsburgh, New York, USA, September 1998
Proceedings, pp. 67-83. Springer-Verlag (1998).

. Beeson, M., Automatic generation of a proof of the irrationality of e, in Armando,

A., and Jebelean, T. (eds.): Proceedings of the Calculumus Workshop, 1999, FElec-
tronic Notes in Theoretical Computer Science 23 3, 2000. Elsevier. Available at
http://www.elsevier.nl/locate/entcs. This paper has also been accepted for publi-
cation in a special issue of Journal of Symbolic Computation which should appear
in the very near future.

. Beeson, M., Some applications of Gentzen’s proof theory to automated deduction,

in P. Schroeder-Heister (ed.), Fztensions of Logic Programming, Lecture Notes in
Computer Science 475 101-156, Springer-Verlag (1991).

. Doherty, P., Lukaszewicz, W., And Szalas, A., Computing circumscription revis-

ited: a reduction algorithm, J. Automated Reasoning 18, 297-334 (1997).

. Ginsberg, M. L., A circumscriptive theorem prover, Artificial Intelligence 39 pp.

209-230, 1989.

. Introduction to Metamathetics, van Nostrand, Princeton, N.J. (1950).
. Lifschitz, V., Computing circumscription, in: Proceedings of the 9th International

Joint Conference on Artificial Intelligence, volume 1, pages 121-127, 1985.
McCarthy, J., Circumscription, a form of non-monotonic reasoning, Artificial In-
telligence, 13 (1-2), pp. 27-39, 1930.

Przymusinski, T., An algorithm to compute circumscription, Artificial Intelligence,
38, pp. 49-73, 1991.

