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The 6π Theorem About Minimal Surfaces

Michael Beeson

We prove that if Γ is a real-analytic Jordan curve in R3

whose total curvature does not exceed 6π, then Γ cannot

bound infinitely many minimal surfaces of the topological

type of the disk. This generalizes an earlier theorem of

J. C. C. Nitsche, who proved the same conclusion under

the additional hypothesis that Γ does not bound any mini-

mal surface with a branch point. It should be emphasized

that the theorem refers to arbitrary minimal surfaces, sta-

ble or unstable. This is the only known theorem that

asserts that all members of a geometrically defined class

of curves cannot bound infinitely many minimal surfaces,

stable or unstable.1

A result of Böhme [5] shows that for each integer n, there are curves meeting
the hypotheses of our theorem that bound more than n minimal surfaces.
Hence it will not be possible to improve the theorem by giving a fixed bound on
the number of minimal surfaces bounded by Γ. The possibility remains open,
however, to give such a bound (perhaps even 3) on the number of immersed

minimal surfaces bounded by Γ.
In [2] and [3], an attack is begun on the “finiteness problem” for minimal

surfaces that furnish relative minima for the area functional. This problem
soon comes down to the study of one-parameter families of minimal surfaces
terminating in a minimal surface with a branch point. The partial results
obtained in those two papers form half the basis for the results of this paper.
The other half is a calculation presented here, also concerning branch points.
These two results enable us to remove the hypothesis about branch points from
Nitsche’s proof.

1. Introduction and notation. P is the unit disk, P̄ its closure. A
minimal surface is a map u : P̄ → R3 such that ∆u = 0 and

∂u

∂z
·
∂u

∂z
=

(

∂u

∂z

)2

= 0.

1This copy has been retyped in TEX in 2006 to be posted on the Web (without changing
the mathematics). See the author’s web site for discussion and more contemporary references.
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We say u is bounded by the Jordan curve Γ in case u restricted to the circle
S1 is a reparametrization of Γ. A branch point of u is a zero of the analytic
function ∂u/∂z. It is an interior branch point or a boundary branch point
according as it lies in P or on S1. The order of a branch point is the order
of the zero of ∂u/∂z. We shall assume u is real-analytic in P̄ and Γ is real-
analytic. Sometimes, for convenience, we may allow other parameter domains
than P̄ , in which case the above definitions undergo obvious modifications.

The Dirichlet functional or Dirichlet integral E(u) is defined by

E(u) =
1

2

∫ ∫

P

|∇u|2 dx dy.

On a suitable space of surfaces, E is Frechet differentiable, and its critical
points are exactly the minimal surfaces bounded by Γ. At a minimal surface
u, E is twice Frechet differentiable, and the second Frechet derivative D2E(u)
is a bilinear operator on the space of “tangent vectors” k : P̄ → R3 such
that ∆k = 0 and k(eiθ) is tangent to Γ at u(eiθ). This is the modern way
of looking at the “second variation” of Dirichlet’s integral. The kernel of the
second variation is the kernel of this bilinear operator. The members of the
kernel are characterized by the “kernel equation”

∂k

∂z
·
∂u

∂z
= 0.

For a proof, see [2].
If u is a minimal surface, there is always a three-dimensional family of

kernel directions due to the action of the conformal group. These have the
form k = Re(A∂u/∂z) where A is analytic. The condition that k be a tangent
vector restricts the choice of A to a three-dimensional family. (See [13].)

If u is a minimal surface with branch points, there are in addition some
kernel directions called “forced Jacobi fields” or “forced Jacobi directions”.
These have the form Re(A∂u/∂z), where A is now meromorphic, but with
poles located among the branch points of u and of low enough orders so that
A∂u/∂z is analytic. Again the condition that k be a tangent vector restricts
the possible choices ofA to a finite-dimensional family. For each interior branch
point of order m, or boundary branch point of order 2m, there are 2m forced
Jacobi fields; this calculation is made explicitly in the appendix to [6]. Note
that a boundary branch point must have even order, in order that the boundary
be taken on monotonically.

By a one-parameter family of minimal surfaces ut (we prefer this notation
to u(t)), we mean a real-analytic function of two variables t and z, defined for
(t, z) in some set I × P̄ , where I is a real interval of the form [0, t0] for some
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The 6π theorem about minimal surfaces 19

t0 > 0, such that for each t, ut = u(t, ·) is a minimal surface. The work of
Böhme, Tomi, and Tromba has reduced the question, whether a (real-analytic)
Jordan curve can bound infinitely many minimal surfaces, to the study of the
possible existence of one-parameter families of minimal surfaces, all with the
same boundary. The strongest of these theorems, which produces analytic
one-parameter families as defined above, is due to Böhme [4].

We do not want to consider one-parameter families that are trivial in the
sense of being induced by the conformal group. We therefore impose the follow-
ing additional condition on the meaning of the phrase “one-parameter family”:
That ut = ∂u/∂t = tah for some tangent vector h to u, where h is not a con-
formal direction.

2. One-parameter families of branched minimal surfaces. We de-
fine a one-parameter family ut of minimal surfaces to be a forced Jacobi family

if for every t (in some interval which is the domain of definition of ut), ut is
a forced Jacobi vector of ut. Thus necessarily each ut is a branched minimal
surface.

2.1. Theorem. Let ut be a one-parameter family of minimal surfaces

bounded by the same real-analytic Jordan curve. Then ut is not a forced Jacobi

family.

Proof. A forced Jacobi vector has the form Re(A∂u/∂z) for some mero-
morphic function A. Our first objective, preliminary to the main computation,
is to show that if a forced Jacobi family exists, we may assume that for t in
the some interval [0, t0] each ut has a branch point of the same order m at 0,
or else that each ut has a branch point of order m at 1, such that A has a pole
at this branch point.

Suppose 0 is a branch point of u0. Then for small t, and for some neigh-
borhood U of 0, the set of branch points of ut in U is given by finitely many
functions qi(t) which are analytic in some rational power of t; this follows from
the theorems on the structure of analytic varieties discussed in §3 of [2], since
the branch points are the simultaneous zeroes of the three analytic functions
which are the coordinates of ∂u/∂z. We may bring any specified branch point
of ut to origin by a conformal transformation depending on t. This process does
not change the property that ut is forced Jacobi, but only adds a conformal
direction to ut, i.e. adds an analytic function to A. In the case of a boundary
branch point of u0, we first note that for some branch point of u0 and some
one of the branch points qi(t) which converge to that branch point as t → 0,
we have that ci(t) is in the closed disk P̄ for t ≥ 0 and A has a pole at qi(t); if
one of these qi(t) lies in the open disk P for t > 0, we can simply restrict the
allowed interval of t-values and assume we are dealing with an interior branch
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point. Otherwise, we may assume that qi(t) remains a boundary branch point
for positive t; then we can bring it to 1 by a rotation.

It will be convenient to treat the boundary branch point case and the
interior branch point case simultaneously. This can be arranged by supposing
that the branch point is at z = 0; in the boundary branch point case that
means that the parameter domain is the disk of radius 1 centered at z = −1.

After the conformal transformation to bring the branch point to origin, u
is analytic not in t but in the new parameter s = tγ for some positive rational
number γ. We have ut = Re(A∂u/∂z) = usγt

γ−1, so us = t1−γγ−1Re(A∂u/∂z).
Restricting the range of values of t to avoid the problematic point t = 0, we
see that us is still a forced Jacobi direction. We now drop the letter s, using t
instead for the new parameter. We have shown that we can assume that 0 is
a branch point for all small t, that A has a pole at 0, and that either 0 is an
interior branch point for all small t or a boundary branch point for all small
t. Let m be the order of the branch point for t = 0. For each i ≤ m, consider
the set of simultaneous zeroes of zi and the three components of the vector
function ∂u/∂z. This consists, by the structure theorems for analytic varieties
discussed in [2], §3, locally of finitely many analytic arcs in (t, z) space. But
these arcs must lie on z = 0, since they are zeroes of zi. Hence either this set
consists of the isolated point z = t = 0, or of (a portion of) the t-axis. Let m
be the greatest value for which it consists of the t-axis. Then for t positive, the
order of the branch point at 0 is exactly m. Again choosing a slightly different
origin of t, we see that we can assume the order of the branch point is m for
t ≥ 0. We next wish to show that we can assume the order of the pole of A
is independent of t also. Let U be an analytic function with u = Re(U); all
such differ by an imaginary constant. If the constant is suitably chosen, we
have Ut = A∂U/∂z, so Ut ∂u/∂z̄ = A (∂u/∂z)(∂u/∂z̄) = 1

2WA, where W is
the area element of u. Thus A can be written as a quotient of functions, each
of which is real-analytic in z and t, say A = F/W . The zero of W at the origin
we have just seen has order 2m, independent of t. Hence the order J of the
pole of A at the origin is 2m minus the order of the zero of F at the origin.
This order is certainly constant on t > 0 for sufficiently small t; again changing
the origin of t, we may assume it is constant on t ≥ 0. We have now achieved
our first objective: we have shown that we can assume 0 is a branch point for
all small t, either an interior branch point for all small t or a boundary branch
point for all small t; that the order m of this branch point is independent of t;
and that A has a pole of order J at the origin, with J independent of t.

As above let U be analytic with u = Re(U); let K = Ut and k = Re(K) =
ut. We have K = A∂u/∂z for a certain meromorphic A.

We now give the main argument. We distinguish two cases. Case 1, A has
a pole at the origin of order J < m. Case 2, J = m. In case 1, we have some
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power zj with 1 ≤ j ≤ m in the expansion of K, hence ∂k/∂z = ∂k/∂z has a
power of zj−1. On the other hand, since ∂u/∂z = O(zm), upon differentiating
with respect to t we obtain ∂k/∂z = O(zm), contradiction.

Now consider case 2. We have A = az−m + O(z−m+1) where a 6= 0. We
have du/dz = bzm + O(zm+1) + O(t), where b is a constant vector. We may
assume that the normal to u0 is directed along the Z-axis, and that the image
of the x-axis in the parameter domain is directed along the X-axis in XY Z-
space. In that case b is a scalar multiple of (1,−i, 0). Changing the parameter
domain by a scale factor, we may assume b = (1,−i, 0). Then when t = 0, K =
A∂u/∂z = a(1,−i, 0)+O(z). We have ut(0) = Re(K(0)) = Re[a(1,−i, 0)] 6= 0.
The fact that ut(0) 6= 0 is the only use we will make of the fact that A has a
pole of order m.

Away from branch points, and for small t, we may represent ut in the
“normal bundle” of u0. That is, for each z0 which is not a branch point of u0,
we can find a neighborhood ∆ × I of (z0, 0) in (z, t) space and real-analytic
functions Φ and ψ defined on ∆ × I such that

ut ◦ Φ = u0 + ψN in ∆ × I (1)

where N = u0
x × u0

y/|u
0
x × u0

y| is the unit normal to u0. Differentiating with
respect to t, and remembering k = ut, we have

k ◦ Φ + (ux ◦ Φ)Re(Φt) + (uy ◦ Φ)Im(Φt) = ψtN.

Remembering k = Re(Adu/dz) we have

Re

(

A ◦ Φ
du

dz
◦ Φ

)

+ (ux ◦ Φ)Re(Φt) + (uy ◦ Φ)Im(Φt) = ψtN in ∆ × I.

The left-hand side is a vector tangent to ut at Φ(z). The right-hand side is
normal to u0 at z. Since Φ(z) = z when t = 0, the only possibility is that both
vectors are 0. Thus ψt is identically zero. Integrating with respect to t we find
that ψ is constant. The constant is zero if ∆ touches the boundary, since all
the ut have the same boundary curve. Analytic continuation along a chain of
neighborhoods avoiding the branch points shows that in any case the constant
is zero; so ψ is identically zero and (1) simplifies to

ut ◦ Φ = u0 in ∆ × I.

In particular all the ut occupy the same two-dimensional subset of R3, and
locally away from the branch points, ut is a reparametrization of u0. However,
the argument is far from finished, because we haven’t yet proved or assumed
that the branch point is a true one.
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An example is instructive at this point, even though not strictly needed for
the proof. Consider the minimal surfaces

ut = Re

[

(1,−i, 0)
zm+1 − t

1 − tzm+1

]

which form an example of a forced Jacobi family, but with non-Jordan bound-
ary, namely the circle S1 traced out m+ 1 times. In that example, Φ may be
constructed as above—it turns out to be

Φ(z) =

[

zm+1 + t

1 + tzm+1

]1/(m+1)

,

which is not analytic in the whole unit disk, but has “branches” like (z2−t)1/2.
This kind of behavior depends on the non-Jordan nature of the boundary.

According to [7], since the boundary is a Jordan curve, the branch point is a
true branch point. (See especially Remark 6.22.2 of this reference for the case
of a boundary branch point.) Also according to [7], in the vicinity of a true
interior branch point there is an arc of transversal self-intersection. That is,
there are two analytic arcs in the parameter domain terminating at the origen
whose images are the same, and along which the self-intersection is transversal.
According to [8], the same is true of a boundary branch point.

Since ut(0) 6= 0, the branch point does not remain fixed in space as t
changes. Since the surfaces ut occupy the same two-dimensional subset of R3,
the point ut(0) (which is the image of the branch point) lies on u0. However,
ut(0) is distinguished form all the points of u0 near the branch point by the
facts that (a) it lies on a line of self-intersection of the surface and (b) the
self-intersection at that point is not transversal, since the normals at a branch
point all point the same direction. This is a contradiction and completes the
proof of the theorem.

3. The 6π theorem.

3.1. Theorem. Let Γ be a real-analytic Jordan curve in R3 with total

curvature ≤ 6π. Then Γ cannot bound infinitely many minimal surfaces.

Remark. J. C. C. Nitsche [10] has proved a similar theorem, with the
same conclusion, but with the additional hypothesis that Γ does not bound
any minimal surface with a branch point.

Proof. Let u be a minimal surface bounded by Γ. By the work of Böhme
[4] (see also [2], §3), either u is isolated (in Ck topology for every large k) or
there is an analytic one-parameter family of minimal surfaces ut defined for
0 ≤ t ≤ t0 for some t0 > 0, such that ut is not a conformal direction. If
every minimal surface bounded by Γ is isolated, then by the compactness of
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the set of minimal surfaces bounded by Γ in Ck topology [9], there are finitely
many minimal surfaces bounded by Γ. Hence, if the theorem is false, there
is a one-parameter family ut of minimal surfaces bounded by Γ. According
to Theorem 2.1, it cannot be the case that for all t, ut is a forced Jacobi
vector. Let Φ = ut ·N . By differentiating (∂u/∂z)2 with respect to t, we find
(∂k/∂z)(∂u/∂z) = 0, where k = ut. This is the kernel equation of D2E(u).
Hence ut is in KerD2E(u). It follows from Theorem 1.2 of [2] that Φ satisfies
∆Φ − 2KWΦ = 0, so 2 is an eigenvalue of ∆Φ − λKWφ = 0; here we have
chosen the origin of t so that u0

t is not forced Jacobi, hence Φ is not identically
zero, by Theorem 1.2 of [2].

By the hypothesis on the total curvature of Γ, together with the Gauss-
Bonnet-Sasaki-Nitsche formula (see [2], §2), we have

6π > 2π + 2πM +

∫ ∫

−KW dxdy (1)

where M is the sum of orders of interior branch points, plus half the orders of
the boundary branch points, and the integral is over the parameter domain.
Note that strict inequality holds in (1) even if the total curvature of Γ is
exactly 6π, since the geodesic curvature (which occurs in the Gauss-Bonnet-
Sasaki-Nitsche formula) can equal the total curvature of Γ, for u a minimal
surface, only if Γ lies in a plane [11], and in this case the theorem is known. If
there is a boundary branch point, its order is necessarily even; hence M is an
integer.

We shall now prove that either Φ0 is identically zero or λmin(u
0), the least

eigenvalue of ∆Φ−λKWΦ = 0, is 2. Since u0 is not isolated, we have λmin ≤ 2,
assuming Φ0 is not identically zero. Since Φ is an eigenfunction for eigenvalue 2,
Φ is orthogonal to the first eigenfunction. (For eigenfunctions, orthogonality
in H1

0 inner product and orthogonality in inner product
∫ ∫

−KWΦψ dxdy
are equivalent.) Hence, Φ cannot have just one sign, since the first eigen-
function does have only one sign (as discussed in [2], §2). It is not difficult
to verity the well-known fact that D+ = {z ∈ D : Φ(z) > 0}, where D is
the parameter domain, and similarly D−, are composed of finitely many con-
nected domains bounded by finitely many analytic arcs. Since by (1) we have
∫ ∫

−KW dxdy < 4π, there must exist one of these connected domains Q for
which

∫ ∫

−KW dxdy < 2π. In this domain, Φ has only one sign and vanishes
on the boundary. Hence λmin(Q) = 2, where λmin(Q) is the least eigenvalue
of ∆Φ − λKWΦ = 0 in Q, Φ = 0 on ∂Q. But this contradicts the theorem
of Barbosa and do Carmo, according to which

∫∫

Q
−KW dxdy < 2π implies

λmin(Q) > 2. See [2], §2 for discussion of Barbosa-do Carmo’s theorem, and
[1] for proof.
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Now suppose ut is an arbitrary one-parameter family of minimal surfaces
bounded by Γ. Let k = ut = tah, Φ = ut · N . It is impossible that Φ is
identically zero in both z and t, for then, by Theorem 1.2 of [2], k is forced
Jacobi, which contradicts Theorem 2.1. Hence for t small but positive, ut is
not a forced Jacobi direction, and Φ is not identically zero. We claim that ut

is immersed for t positive. If not, then M ≥ 1 in (1), so
∫ ∫

−KW dxdy < 2π.
Hence, by Barbosa-do Carmo’s theorem, λmin(u

t) > 2. But since Φt is not
identically zero, 2 is an eigenvalue, contradiction. Hence ut is immersed for t
positive. Then u0 cannot have an interior branch point, by Theorem 5.1 of [2].
Now there are three possibilities: u0 is immersed, or it has a boundary branch
point and h0 is forced Jacobi, or it has a boundary branch point and h0 is not
forced Jacobi. The last possibility contradicts Theorem 7.2 of [3]. Suppose
the second possibility holds. Then by theorem 8.1 of [3], the boundary branch
point of u0 has order ≥ 4, so M in (1) satisfies M ≥ 2, contradiction. Hence
u0 is immersed.

We have now shown the following: Every one-parameter family of minimal
surfaces bounded by Γ consists, for small t, of immersed surfaces with λmin = 2
for t positive. It is also true that λmin = 2 for t = 0, as we now prove:
Since h0 is not forced Jacobi, we have Φ = tnψ for some integer n, where
ψ0 is not identically zero. Since for t positive, Φ has only one sign (since
λmin = 2), it follows that ψ has only one sign, even for t = 0; since ψ is an
eigenfunction for the eigenvalue 2, it follows that λmin = 2 when t = 0. Thus
every one-parameter family of minimal surfaces bounded by Γ consists entirely
of immersed surfaces with λmin = 2. We may now employ Tomi’s argument
[12] (see also the proof of Theorem 5.1 of [2]) to reach a contradiction. That
completes the proof of Theorem 3.1.
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