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Proof and Computation

◮ Analytic geometry is more systematic than Euclid. It reduces
geometry to calculation.

◮ First-order proofs are objects of beauty in their own right, but
they are hard to come up with.

◮ A computation tells you that something is true.
A proof tells you why it’s true.

◮ We will study the reduction(s) of proof to computation, and
then try to reverse the process, getting proofs from
computations.



A commutative diagram, in theory

Geometric Proof Algebraic Proof

Geometric Theorem Algebraic Translation



Yogi Berra said

In theory, there is no difference between theory and practice.

In practice, there is.



That commutative diagram, in practice

Here be dragons

Geometric Proof Algebraic “Proof”

Geometric Theorem Algebraic Translation

Gröbner bases, etc.

CAD

Chou, Wu, Descartes

Descartes, Hilbert

Let’s get around the dragons by going across the bottom.



Outline of the talk

◮ We will focus on Euclidean ruler-and-compass geometry EG.

◮ We want to know if a given theorem is provable in EG, and to
find a proof if it is.

◮ How far can we get proving geometry theorems with a theorem
prover? (left side of the diagram, fight the dragons directly!)

◮ How far can we get by computations towards deciding such
problems? (right side of the diagram)

◮ How can we convert computations into verified computations?
(right side of the diagram)

◮ How can we convert verified computations into geometrical
proofs? (bottom of the diagram)



First order theories of geometry

◮ Angles can be treated as ordered triples of points.

◮ Rays and segments are needed only for visual effect; for theory
we need only points, lines, and circles.

◮ We don’t even need lines and circles; every theorem comes
down to constructing some points from given points, so that
the constructed points bear certain relations to the original
points.

◮ The relations in question can be expressed in terms of
betweenness and equidistance.



Tarski geometry and Hilbert geometry

Just to avoid confusion: today we are concerned with “elementary”
geometry in the sense that only line-circle and circle-circle
continuity are used. Hilbert’s geometry included a second-order
continuity axiom; we may compare it to requiring that Dedekind
cuts be filled, although Hilbert formulated it differently.

“Tarski geometry” is a first-order theory with a continuity schema,
essentially requiring that first-order definable Dedekind cuts be
filled. Sometimes “elementary” means first-order, and Tarski wrote
a famous paper, What is Elementary Geometry, in which
“elementary geometry” meant Tarski geometry. But “elementary”
can also refer to the Elements of Euclid, which is a weaker theory.



Issues in the axiomatization of geometry

◮ What are the primitive sorts of the theory?

◮ What are the primitive relations?

◮ What (if any) are the function symbols?

◮ What are the continuity axioms?

◮ How is congruence of angles defined?

◮ How is the SAS principle built into the axioms?

◮ How close are the axioms to Euclid?

◮ Are the axioms few and elegant, or numerous and powerful?

◮ Are the axioms strictly first-order?



Various axiomatizations of geometry

Axiomatizations have been given by Veblen, Pieri, Hilbert, Tarski,
Borsuk and Szmielew, and Szmielew, and that list is by no means
comprehensive. Nearly every possible combination of answers to
the “issues” has something to recommend it. For example, Hilbert
has several sorts, and his axioms are not strictly first-order; Tarski
has only one sort (points) and ten axioms. My theories ECG and
EG have points, lines, and circles, and function symbols so that
their axioms are quantifier-free and disjunction-free.

It is a lot of work to develop geometry constructively from ten or
so axioms about points, but very elegant. In the experiments I
describe today, I used Tarski’s axioms. (Fewer primitives is easier
for a theorem-prover; but it may be harder to get started.)



The model-theoretic view

A euclidean field is an ordered field in which every square has a
square root; equivalently, a field in which every element is a square
or minus a square, every element of the form 1 + x2 is a square,
and -1 is not a square.

If F is a euclidean field, then using analytic geometry we can
expand F2 to a model of geometry.

Descartes and Hilbert showed, by giving geometric definitions of
addition and multiplication, that every model of Euclidean
geometry is of the form F2, where F is a euclidean field.

Similarly every model of Tarski geometry is F2, where F is
real-closed.



The Tarski field T

◮ T is the least subfield of the reals closed under square roots of
positive elements.

◮ T 2 is the minimal model of ruler-and-compass, or Euclidean,
geometry EG.

◮ T consists of all real algebraic numbers whose degree over Q

is a power of 2. It is not of finite degree over Q.



Decidability issues

◮ Gödel: Proof can’t always be reduced to computation

◮ Tarski: But in algebra and geometry, it can.

◮ Rabin-Fischler: But not efficiently. Any decision procedure is
at least double-exponential (in the number of variables).

◮ Julia Robinson: Q is undecidable.

◮ Ziegler: any finitely axiomatizable extension of field theory is
undecidable–in particular the theory of euclidean fields. His
proof shows the AEA fragment is undecidable.

◮ Tarski’s conjecture: The minimal model of ruler-and-compass
geometry, T2, is undecidable.

◮ Conjecture: Euclidean geometry (the AE fragment of Tarski
geometry) is decidable.



Euclid lies in the AE fragment

Euclid’s theorems have the form,

◮ Given some points bearing certain relations to each other,
there exist (one can construct) certain other points bearing
specified relations to the original points and to each other.

◮ The case where no additional points are constructed is
allowed.

◮ The points are to be constructed with ruler and compass, by
constructing a series of auxiliary points.

◮ Constructed points are given by terms of EG, built up from
IntersectLines , IntersectLineCircle1 , etc.

◮ The auxiliary points are their subterms.

◮ Such theorems translate into the AE fragment of field theory.



Decidability of Euclidean geometry

◮ Although Tarski geometry (with first-order full continuity) is
decidable, it does not follow that ruler-and-compass geometry
(with only line-circle continuity), which we are here calling
Euclidean geometry, or even its AE fragment, is decidable.

◮ The AEA fragment is undecidable, by Ziegler’s proof.

◮ Is there an algorithm for deciding of an AE statement whether
it is a theorem of Euclidean geometry?

◮ This is equivalent to asking if there is an algorithm for
deciding whether an AE statement of field theory is provable
in euclidean field theory (i.e. true in all euclidean fields).



An a priori bound on the number of auxiliary points?

Consider the class of geometrical problems of the form, given n
points and some relations between them, can you construct k more
points satisfying some relations with each other and the original
points? If you can do so, you may need to construct a number of
auxiliary points to achieve the desired result.

◮ Can one give an a priori bound on the number of auxiliary
points that will suffice? The bound should depend only on n
and k.

◮ Such a bound f(n, k) would give us a decision procedure,
because there are a finite number of ways to construct at
most f(n, k) points, and we can “just try them all”, and test
whether the result is achieved.

◮ Conversely, if we have such a decision procedure, we can apply
it, and if it says the problem is solvable, we count the number
of auxiliary points; and if it says the problem is not solvable,
we can take any number for the bound.



Decision procedures for a theory versus for R2

A decision procedure for the AE fragment gives us an a priori
bound on the number of auxiliary points needed for a Euclidean
construction, and vice versa.

The proof of that equivalence is a straightforward application of
the following well-known theorems:

◮ cut elimination

◮ Artin’s theorem that every ordered field has a real closure

◮ Tarski’s theorem that all real closed fields are elementary
equivalent.

Even though the proof is short, each of these three theorems is a
“big gun”, so the equivalence is in some sense a deep result.



Recall the road map of this talk

Here be dragons

Geometric Proof Algebraic “Proof”

Geometric Theorem Algebraic Translation

Gröbner bases, etc.

CAD

Chou, Wu, Descartes

Descartes, Hilbert



Coming up with proofs

Down the left side of the diagram (and fight the dragons)

◮ Pencil and paper

◮ Proof checkers

◮ Theorem provers

Around the dragons to the right

◮ translate geometry to algebra (across the top)

◮ Decision methods, Gröbner bases, etc. (down the right side)

◮ Back-translation from calculation (left across the bottom)



Proofs in Geometry

Thales 600 BC
Euclid 300 BC
Descartes 1637
Pieri 1899
Hilbert 1899-1908
Borsuk-Szmielew 1960
Tarski 1941-65
Gupta 1965
Szmielew 1965-1976
Gelernter 1960
Quaife 1990
Narboux 2006
Avigad, Dean, and Mumma 2006



Computation

Descartes 1637
Wu 1976-88
Chou 1988–93
Chou, Gao, and Zhang 1993
Kapur 1986–1990
Ko 1988–89
Kutzler and Stifter 1986–88



A challenge

Get first-order proofs of geometrical theorems:

◮ Those in Szmielew’s work and Quaife’s work

◮ Those in Euclid

◮ Those in Chou’s book



Tarski’s language

There is only one sort of variables, for points.

The primitive notions are betweenness and equidistance.

T (a, b, c) b is non-strictly between a and c

E(a, b, c, d) segment ab is congruent to segment cd

ab ≡ cd human notation for E(a, b, c, d)

Hilbert, Pasch, Veblen, and I used strict betweenness B(a, b, c).



Eliminating angle congruence

◮ Hilbert treated angles as primitive objects and angle
congruence as a primitive relation.

◮ The idea to define these notions (instead of take them as
primitive) goes back (at least) to J. Mollerup (1903), but he
attributes it to Veronese.

◮ The key idea is the “five-segment axiom” (A5):
d

a b c

D

A B C

If the four solid segments are pairwise congruent then the fifth
(dotted) segments are congruent too. This is essentially SAS for
triangles dbc and DBC.



Tarski’s first six axioms

uv ≡ vu (A1)

uv ≡ wx ∧ uv ≡ yz → wx ≡ yz (A2)

uv ≡ ww → u = v (A3)

T (u, v, ext(u, v,w, x)) (A4), segment extension

Five-segment axiom (A5), a form of SAS

T (u, v, u) → u = v (A6)



Pasch’s axiom (1882)
As Pasch formulated it, it is not in AE form. There are two AE
versions that go back to Veblen (1904), who proved outer Pasch
implies inner Pasch. Gupta (1965) proved inner Pasch implies
outer Pasch. After that Tarski’s system used inner Pasch as axiom
(A7) and dropped outer Pasch.

Figure: Inner Pasch (left) and Outer Pasch (right). Line pb meets
triangle acq in one side. The open circles show the points asserted to
exist on the other side.
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Gupta’s 1965 thesis

In his 1965 thesis under Tarski, H. N. Gupta proved two great
theorems:

◮ Inner Pasch implies outer Pasch.

◮ Connectivity of Betweenness:

a 6= b ∧ T (a, b, c) ∧ T (a, b, d) ⇒ T (a, c, d) ∨ T (a, d, c).

◮ That is, betweenness determines a linear order of points on a
line. Points d and c, both to the right of b on Line(a, b),
must be comparable.

◮ Taken as an axiom by Tarski before Gupta.

◮ The proof is complicated. It uses 8 auxiliary points and more
than 70 inferences, and uses all the axioms A1-A7.

◮ Gupta got his Ph. D. sixteen years after his second master’s
degree.



Dimension Axioms

(A8) (lower dimension axiom) says there are three non collinear
points (none of them is between the other two)

(A9) (upper dimension axiom) says that any three points
equidistant from two distinct points must be collinear. In other
words, the locus of points equidistant from a and b is a line (not a
plane as it would be in R3).

(A1) through (A9) are the axioms for “Hilbert planes.”



Tarski’s Parallel Axiom (A10)

x y

b
a

bb

b
c

b
t

b
d

◮ Open circles indicate points asserted to exist.

◮ There are many other equivalent forms, including at least one
with no existential quantifiers.



Continuity

◮ Tarski took the full first-order continuity scheme, similar to
definable Dedekind cuts.

◮ We consider “Euclidean” continuity axioms, though Euclid
didn’t notice he needed them.

◮ Line-circle continuity says that if line L has a point inside
circle C then L meets C.

◮ Circle-circle continuity says that if circle K has a point inside,
and a point outside, circle C then it meets C.

But what is “inside” in Tarski’s theory?



Line-circle continuity

Figure: Line-circle continuity
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Circle-circle continuity

Figure: Circle-circle continuity. p is inside C and q is outside C, as
witnessed by x, y, and z, so the intersection points 1 and 2 exist.
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Line-circle versus Circle-circle

◮ Circle-circle continuity implies line-circle continuity using
A1-A9.

◮ Line-circle continuity implies circle-circle continuity using
A1-A9 but no first-order proof is known!

◮ There is a challenge for automated deduction in geometry!

◮ With the aid of the parallel postulate (A10), the proof by
analytic geometry could, in theory, be used with
back-translation to get a first-order proof.

◮ Without (A10) that method is not even in theory available.

◮ The known proof is model-theoretic, via the Pejas
classification of Hilbert planes.



Szmielew’s Development from Tarski’s Axioms

◮ The formal development of geometry in Tarski’s theory was
carried out by Szmielew in her course at UC Berkeley, 1965.

◮ Important contributions were made by Gupta in his 1965
Ph. D. thesis, which was never published.

◮ Szmielew’s lectures were finally published in 1983 in Part I of
the book by Schwabhäuser, Szmielew, and Tarski (recently
reprinted by Ishi Press). Chapters 2 through 16 contain
theorems.

◮ Narboux (2006) checked the proofs through Chapter 12 in
Coq. So we have first-order proofs in that sense.



A direct attack

How far can one get in 2012 using a modern resolution theorem
prover? Larry Wos and I conducted three (still continuing)
experiments using Otter and Prover 9:

◮ Szmielew’s development from Tarski’s axioms

◮ Quaife’s work and challenge problems from 1990

◮ Euclid



Szmielew in Otter

◮ Larry Wos and I experimented with going through Szmielew’s
development, making each theorem into an Otter file, giving
Otter the previously proved theorems to use. The hypothesis
to be tested was

◮ A good theorem prover can prove most of those theorems, at
least it can if you give it the diagram as well as the statement
of the theorem.

◮ You give it the diagram by defining a name for each of the
points that need to be constructed.

◮ Then those terms get the same weight as an atom and
formulas involving them are more likely to be used.)

◮ That amounts to giving the prover the statement of the
theorem, and the diagram.



What happened (so far–we’re still working on this)

◮ We had to tell Otter the names of constructed points.

◮ Then we roared through Chapters 2 and 3.

◮ We hit a snag at Satz 4.2. An argument by cases according as
a = c or a 6= c is used. Otter could do each case, but not the
whole theorem!

◮ Prover 9 could do it without help, but it took 67,000 seconds!
(1 day = 86,400 sec.)

◮ The inability to argue by cases is a well-known problem in
resolution theorem-proving. On five or six (out of many)
subsequent theorems, we had to help Otter with arguments by
cases.

◮ We did that by putting in the case split explicitly, and giving
the cases low weights. For example we would put in b=c |

b!=c and then give both literals a negative weight. With this
trick, if the cases can be done in separate runs, then we can
get a proof in a single run.



Gupta’s theorem proved using Otter

◮ Chapter 5 contains a difficult theorem from Gupta’s thesis,
the connectivity of betweenness.

◮ Recall: a 6= b ∧ Babc ∧ Babd → Bacd ∨ Badc.

◮ Otter and Prover9 could not prove Gupta’s theorem without
help.

◮ We put Gupta’s proof steps (about thirty of them) in as
preliminary goals. We got proofs of some of them. We gave
the steps of those proofs low weight, so similar formulas would
be kept and used. Wos calls this technique “resonators”.

◮ We got a 122-step proof of Gupta’s theorem.

◮ By continued efforts, we eventually got a 73-step proof.



Otter’s new proof of Gupta’s theorem

◮ Otter did not just find Gupta’s proof whose steps we had used
as resonators.

◮ Otter’s proof contains only about half of those proof steps,
and it contains some steps that are not in Gupta’s proof.

◮ It even contains some congruences between segments that are
not considered in Gupta’s proof.

◮ By the way, Gupta’s proof mentions a total of twelve points,
forming a complicated diagram that cannot even be sensibly
drawn as one diagram, because it diagrams an impossible
situation for proof by contradiction.

◮ Both proofs are hard for a human to “understand”, although
they are not too long to check line-by-line.



Work in Progress

◮ After Gupta’s theorem, we had no further difficulties with the
rest of Chapters 5 and 6; Otter required no help except a
couple of case splits.

◮ We intend to continue this project in October.

◮ In Chapter 7 we will prove the existence of a midpoint
(without using circles) a la Gupta.



Quaife revisited in 2012

◮ Quaife made it approximately to where Wos and I hit our first
snag in Szmielew.

◮ His most difficult example was that the diagonals of a
“rectangle” bisect each other. But here a “rectangle” is a
quadrilateral with two opposite sides equal and the diagonals
equal.

◮ Most of Quaife’s theorems are in Szmielew Chapters 2 and 3,
or the first part of 4, or are similar to such theorems, but use
some defined notions such as “reflection.”

◮ Wos and I could easily prove them all.



Quaife’s first challenge problem

Quaife left four challenge problems. One of them is the
connectivity of betweenness, Satz 5.1 in Szmielew. So, in 2012 we
can do what Quaife could not do in 1990. There are two factors
that might be suggested to account for that:

◮ Computers run faster and have larger memories in 2012 than
in 1990.

◮ We know some techniques for using Otter that Quaife didn’t
know, specifically resonators, hints, and the hot list. We used
these techniques both for proof discovery and for proof
shortening.

◮ Which factor is more important?

◮ Maybe we could have found the proofs we found with 1990
computers and 2012 techniques, but we’re glad we didn’t have
to.

◮ We didn’t find the proof with a 2012 computer and a 1990
technique.



Quaife’s other challenge problems

Two of them are Gupta’s other theorems:

◮ midpoint without using circles

◮ inner Pasch implies outer Pasch

The third goes back to Hilbert:

◮ Construct an equilateral triangle without using circles

We haven’t proved these yet with our methods but are confident
we can do it.



Euclid

Book I, Prop. 1. constructs an equilateral triangle.

b

b bA B

Why do the two circles meet?



Euclid from Tarski?

◮ Quaife did not get as far as proving any theorem about circles.

◮ Neither did Szmielew or Gupta.

◮ As of summer 2012, neither by hand nor by machine had
development from Tarski’s axioms reached the first
proposition of Euclid, more than half a century after Tarski
formulated his axioms.



Euclid I.1 from Tarski

◮ To prove I.1 we will need the circle-circle continuity axiom.

◮ A priori it seems we might need the upper dimension axiom,
too, but we don’t. Circle-circle continuity is sphere-sphere
continuity in R3.

◮ Otter proves Euclid I.1 from circle-circle continuity in less
than two seconds, with a good choice of inference rules.

◮ When we first did it, it took eleven minutes.

◮ That’s about how long it will take you by hand.



Euclid and Tarski

◮ I.2 is immediate from Tarski’s extension axiom; Euclid only
postulated you can extend a segment somehow.

◮ I.3 defines ≤; it is not a theorem.

◮ I.4 is the SAS congruence criterion. That requires defining
angle congruence; it is Satz 11.4 in Szmielew!

◮ Angle congruence and indeed comparison of angles (≤ for
angles) are primitive in Euclid, but defined in Tarski’s system.

The resulting complications have little to do with automated
deduction. They are the consequence of choosing a very
parsimonious formal language.

Therefore, we should complete Szmielew Chapter 11 first, or take
some axioms about comparison and congruence of angles, in order
to formalize Euclid directly.



The road map again

Here be dragons

Geometric Proof Algebraic “Proof”

Geometric Theorem Algebraic Translation

Gröbner bases, etc.

CAD

Chou, Wu, Descartes

Descartes, Hilbert



Proof by computation, in theory

◮ Start with a geometry theorem.

◮ Express it as algebraic equations (or inequalities) using
analytic geometry, introducing new variables for the
coordinates of the points to be constructed.

◮ Calculate to see if these equations can be satisfied.

◮ If so, then you have a proof in some sense.

◮ But you still don’t have a first-order proof.



Proof by computation, in practice

◮ CAD decomposition breaks down on five or six variables.

◮ No new theorem proved by CAD

◮ Wu’s method

◮ Chou’s area method

◮ These methods proved hundreds of beautiful theorems!

◮ In that sense, they far outperformed resolution theorem
proving.

◮ I am about to complain about what they can’t do–but I stand
in awe of what they can do.



Some defects of Wu’s and Chou’s methods

◮ Both these methods work only on theorems that translate to
algebra using equations, with no inequalities. Thus the
“simple” betweenness theorems of Szmielew Chapter 3 are
out-of-scope.

◮ You can’t ask for a proof from ruler-and-compass axioms. You
can only ask if the theorem is true in R2.

◮ Thus there is no problem trisecting an angle; this is not about
ruler-and-compass geometry.

◮ A proposition like Euclid I.1 is just trivial: all the subtleties
and beauties of the first-order proof are not captured by these
methods. It just computes algebraically that there is a point
on both circles.

◮ In short, we’re not doing geometry. We’re doing algebra.



How can we bridge the gap?
Down the right and left across the bottom of the road map.

◮ Formalize the translation from geometry to algebra.

◮ Take the quotes off “proof” in the lower right: algebraic
“proof” must become algebraic proof. That is: Figure out
how to convert the algebra performed by Chou’s method into
first-order proofs of algebraic theorems, from some algebraic
axioms.

◮ Back-translate to geometry, using the geometric definitions of
addition and multiplication.

◮ In theory this can certainly be done.

◮ How about in practice?



Defining arithmetic in geometry

Descartes showed how to define multiplication and addition of
positive numbers in geometry. Hilbert gave a different definition of
multiplication, but it needs the same hard work to justify it.

◮ Addition translates into segment “insertion” (extension for
positive elements).

◮ Multiplication, as defined by Hilbert, works like this:

bab

bî

b
a

b
b



Model-theoretic conclusions

◮ By Descartes and Hilbert, models of Euclidean geometries
(A1-A10) are F2 where F is an ordered field.

◮ Line-circle and circle-circle continuity axioms correspond to
euclidean fields.

◮ That characterization does not help us find proofs.



Models and interpretations

◮ In general model-theoretic arguments are looked at by proof
theorists as “interpretations.”

◮ An interpretation maps formulas of the source theory into
formulas of the target theory, preserving provability.

⊢ φ ⇒ ⊢ φ̂

◮ Usually the proof also shows how to transform the proofs
efficiently. We have interpretations from geometry to field
theory that express the model theory.



Advantage of Interpretations over Models

◮ An interpretation enables you to translate proofs from one
theory to the other.

◮ I wrote out the details of the interpretations between
geometry and field theory, because I was working on
constructive geometry, where model theory is not available.

◮ There are dozens of pages of details.

◮ Model theory is easier, but proof theory is more informative.



Proofs by computation?

◮ In theory, then, we could get a proof from geometric axioms
out of a computation.

◮ In practice, Chou was aware of this, but he says, “I know of
no single theorem proved in this way.”



Geometry to algebra–two approaches
The top arrow of the road map.

Cartesian analytic geometry:

◮ Coordinatize every point.

◮ Convert segment congruence to equations.

◮ Convert betweenness to inequalities.

Chou’s area method:

◮ position ratios, signed areas, Pythagorean differences.

◮ Co-side theorem, co-angle theorem, etc.

◮ Works well for theorems asserting coincidence or collinearity.

◮ Equations, not inequalities.



Vector Geometry
A formal framework encompassing both computation and proof.

◮ A first-order theory VG that contains both geometry and
algebra.

◮ In VG we can formalize the translation in both directions.

◮ The whole diagram of geometry and algebra, proof and
(algebraic) computation, can be formalized in VG.



Language of Vector Geometry

Three sorts:

◮ points p, q, a, b

◮ scalars α, β, λ, s, t

◮ vectors u, v

Intuitively you may think of vectors as equivalence classes of
directed line segments under the equivalence relation of parallel
transport. Constructors and accessors:

◮ p ◦ q is a vector.

◮ scalar multiplication: λu is a vector

◮ dot product: u · v is a scalar

◮ cross product: u × v is a scalar (not a vector, we are in two
dimensions)



Language of Vector Geometry

Relations:

◮ betweenness and equidistance from Tarski’s language

◮ Equality for points, equality for vectors, equality for scalars.
Technically these are different symbols.

◮ x < y for scalars.

Function symbols (other than constructors and accessors) and
constants:

◮ Skolem symbols for Tarski’s language, e.g. ext, ip, ic.

◮ 0, 1, ∗,+, /, unary and binary −, and
√

for scalars.

◮ 0 is a vector; u + v, u− v, and −u are vectors.

◮ 0̂, 1̂, and î are unequal points.

◮ î, a point equidistant from 1 and from −1 = ext(1, 0, 0, 1).



Division by zero

1/0 is “some scalar” rather than “undefined”, because we want to
use theorem provers with this language and they don’t use the
logic of partial terms. You can’t prove anything about 1/0 so it
doesn’t matter that it has some undetermined value. Other
“undefined” terms are treated the same way.

You have the axiom x 6= 0 → x ∗ (1/x) = 1, not the axiom
x ∗ (1/x) = 1.



Axioms of Vector Geometry

◮ Tarski’s axioms for ruler-and-compass geometry.

◮ The scalars form a euclidean field.

◮ The obvious axioms for − and / and
√

◮ The vectors form a vector space over the scalars.

◮ The usual laws for dot product and 2d cross product.

◮ a ◦ b = −b ◦ a

◮ p ◦ p = 0

◮ E(0̂, î, 0̂, 1̂)

◮ E(̂i, 1̂, î,−1̂) where −1̂ = ext(1̂, 0̂, 1̂, 0̂)

◮ If ab and cd are parallel and congruent then a ◦ b = ±c ◦ d,
with the sign depending on whether ad intersects bc or not.

◮ If a, b, c, and d are collinear and ab and cd are congruent,
then a ◦ b = ±c ◦ d, with the appropriate sign (given by
betweenness conditions).



From computation to proof
Around the dragons, all inside the theory VG.

The plan:

◮ Start with a geometric theorem φ to be proved.

◮ Do the analytic geometry to compute φ̂. (By Chou or
Descartes)

◮ Prove φ ↔ φ̂.

◮ Find (e.g. by Chou’s program or by hand) an informal proof
that φ̂ is true, by calculation.

◮ Get a formal proof in VG of φ̂, i.e., verify the calculation.

◮ Combine it with the proof of φ̂ → φ to get a proof of φ.

◮ Eliminate the non-geometrical axioms to get a proof of φ.



Analytic geometry in VG
Across the top of the road map

◮ Let φ be a formula of EG. Let φ̂ be its translation into field
theory (expressed using scalar variables in VG).

◮ Then VG proves φ ↔ φ̂. If φ is AE, so is φ̂.

◮ There may be more than one way to compute a translation φ̂.

◮ We want a way that makes it as easy as possible to find
proofs that φ → φ̂ and φ̂ → φ.



Chou’s method formalizable in VG
Across the top by Chou instead of Descartes

◮ The position ratio:

ab

cd
:= pr(a, b, c, d) =

(a ◦ b) · (c ◦ d)

(c ◦ d) · (c ◦ d)

Our pr is defined whenever c 6= d. Chou’s is defined only
when a, b, c, and d are collinear, but in that case they agree.

◮ The signed area of an oriented triangle is defined by

A(p, q, r) :=
1

2
(q ◦ p) × (q ◦ r).

◮ Chou’s other important concepts and theorems can also be
defined and proved in VG.

◮ This should be checked by machine.



Algebra in VG
Down the right side of the road map

If t and s are terms of euclidean field theory (with the larger
language of scalars in VG), and t are s are computationally equal
using the usual laws of algebra, then they are provably equal in
euclidean field theory, and hence in VG.

That is, computations arising from Euclidean theorems can be
verified in VG.



Formalizing the back-translation
Left across the bottom of the road map

◮ Find proofs from Tarski’s axioms of the laws of field theory,
using the geometrical definitions of addition and
multiplication.

◮ This uses the hardest theorem that Szmielew got to, namely
the theorem of Pappus (or Pascal as Hilbert called it).

◮ Even the commutativity of addition is not completely trivial.

◮ Chapter 15 of Szmielew has the details.

◮ Nobody has yet done it before 2012 with a theorem prover or
a proof checker.

◮ Narboux didn’t get that far in 2006, but he’s speaking at this
conference.

◮ Wos and I didn’t get that far.

◮ This really should be done. Accio Firebolt! (Harry Potter flew
over the dragons on his Firebolt.)



A test case: the centroid theorem (medians all meet)

◮ Probably possible to get a proof directly, but not easy.

◮ Anyway, a good test case for the computation-to-proof
paradigm.

◮ Chou’s algebraic proof comparatively simple

◮ Cartesian analytic geometry not very complicated either.

◮ Formalize the geometry-to-algebra reasoning in VG.

◮ Formalize the algebraic computation in VG.

◮ Carry out the back-translation and get a formal proof in EG.

◮ Shorten that long proof using Wos’s proof-shortening
techniques.

◮ Would the resulting proof be beautiful, or a mess?
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