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Plateau’s Problem
Given a Jordan curve Γ in R3,
find a minimal surface bounded by Γ.

I Today we are interested only in real-analytic Γ
I And only in surfaces of the topological type of the unit disk.

A(u) is the area of surface u. A relative minimum of area is a
surface u bounded by Γ such that A(u) ≤ A(v) for all “nearby”
surfaces v bounded by Γ. An absolute minimum of area has
A(u) ≤ A(v) for all surfaces bounded by Γ.

I A relative minimum of area is a minimal surface
I But not necessarily conversely.

Soap films that don’t disappear immediately correspond to relative
minima.
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Finiteness

Theorem: a real-analytic Jordan curve Γ cannot bound infinitely
many relative minima of area.

Today I will give background material and, time permitting, an
overview of the proof. There is no time to discuss related results
and conjectures– see the last section of my paper.

The full paper is available on the Math ArXiv, and also at
www.michaelbeeson.com (click Research and then Publications
and go to the end of the list). Click Talks to find these slides.
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Compactness

Since the 1930s it has been known that, if Γ bounds infinitely
many minimal surfaces, there is a sequence un of them converging
to a minimal surface u bounded by Γ.

The limit of a sequence of absolute minima is another absolute
minimum. But that is not necessarily true for relative minima.

It turns out that the difficult case is when the sequence un

converges to a surface u with a branch point; and the really
difficult case is when the branch point is on the boundary.
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Complex notation

uz =
∂u

∂z
=

1
2
(ux − iuy)

uz̄ =
∂u

∂z
=

1
2
(ux + iuy)

Then the harmonicity of u is expressed by uz̄ = 0 and the
conformality by

u2
z = 0

A minimal surface is a harmonic conformal map.

Branch points are the zeroes of uz.
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Weierstrass representation

We make use of the Enneper-Weierstrass representation of u:

u(z) = Re

 1
2

∫
f − fg2 dz

i
2

∫
f + fg2 dz∫

fg dz


where f is analytic and g is meromorphic in the upper half-disk.
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The Gauss map and Gaussian area

The Gauss map is the unit normal

N(z) =
ux × uy

|ux × uy
|

considered as a map from the parameter domain to the sphere S2.
The Gaussian image is the range of this map, and the Gaussian
area is the area of the range. In the case of a minimal surface, the
Gauss map is conformal.
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Total curvature

The Gaussian curvature K is the product κ1κ2 of the principal
curvatures. W is the area element det gij . KW is the Jacobian of
the Gauss map N (considered as defined in the parameter domain);
K is the Jacobian of N (considered as defined on the surface.
The total curvature of a surface is

∫
KW dxdy, or sometimes

(loosely) the magnitude of this quantity.
The total curvature of a Jordan curve Γ is

∫
Γ κ ds, where κ is the

magnitude of the curvature vector. The geodesic curvature, which
only makes sense relative to a surface u bounded by Γ, is the
component of the curvature that is normal to u.
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Böhme, Tromba, and Tomi
Finiteness for relative minima (my work)

Putting a microscope on the branch point
Calculating the eigenfunction

H is not constant
Finiteness: the proof once we know H is not constant

Plateau’s Problem
Finiteness
Compactness
Complex notation
Weierstrass representation
The Gauss map and Gaussian area
Gauss-Bonnet with Branch Points
An eigenvalue problem on the sphere
Gaussian images and convergence

Gauss-Bonnet

The Gauss-Bonnet formula says that for regular surfaces (minimal
or not) ∫

KW dxdy +
∫

Γ
κg = 2π

Note that for minimal surfaces, KW is negative.
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Gauss-Bonnet with Branch Points

If there are branch points, there is another term in the
Gauss-Bonnet formula:∫

KW dxdy +
∫

Γ
κg = 2π + 2Mπ

where M is the sum of the orders of the interior branch points and
the half-orders of the boundary branch points. In words, m

hemispheres of Gaussian area can be replaced by one boundary
branch point of order 2m, and m full spheres of Gaussian area can
be replaced by an interior branch point of order 2m.
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An eigenvalue problem on the sphere

Associated with the map N is a natural eigenvalue problem:

4φ+
1
2
λ|∇N |2φ = 0 in Ω

φ = 0 on ∂Ω

We are only interested in λ = λmin, the least eigenvalue.
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Gaussian images and convergence

Suppose the minimal surfaces un converge to u.
Suppose that the un have no branch points, but u does have a
branch point; for simplicity suppose it just has one branch point.
In the Gauss-Bonnet formula, outside a tiny disk around the
branch point, convergence is uniform. But an extra Mπ appears in
the limit. Hence that tiny disk around the branch point must
contribute almost exactly M hemispheres worth of Gaussian area
to the Gaussian image of un.
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Convergence to a surface with an interior branch point

. . . that tiny disk around the branch point must contribute almost
exactly M hemispheres worth of Gaussian area to the Gaussian
image of un.
If the branch point is an interior branch point, then the sphere is
covered almost exactly M/2 times in each neighborhood U of the
branch point, for large n.
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Convergence to a surface with a boundary branch point

. . . that tiny disk around the branch point must contribute almost
exactly M hemispheres worth of Gaussian area to the Gaussian
image of un.
Now the order of the branch point is 2M .
If the branch point is a boundary branch and all the surfaces are
bounded by Γ then the normal N to un lies almost in a plane
(perpendicular to Γ at the branch point of u), so the Gaussian area
is almost equal to that of M hemispheres.
How is that Gaussian area taken on? Is one hemisphere covered M
times? What does the image of the boundary look like near the
branch point? It can probably be incredibly wild.
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The second variation of area
The surface u is varied to nearby surfaces u+ ϕN , where ϕ is zero
on the boundary. The second variation of area is a bilinear
functional on an appropriate Sobolev space of such φ. We write it
D2A(u), and so we can write D2A(u)[ϕ,ψ], or when ϕ = ψ, for
short just D2A(u)[ϕ].
The formula for the first variation of area is

DA(u)[φ] = −
∫ ∫

HφW dxdy

Differentiating this we find after some calculation:

D2A(u)[φ, ψ] =
∫ ∫

ψ(−4φ+ 2KWφ) dx dy
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The eigenvalue associated with D2A[u]

It is well known that the kernel of the second variation consists
exactly in solutions of the eigenvalue equation we mentioned
before:

4φ+
1
2
λ|∇N |2φ = 0 in Ω

φ = 0 on ∂Ω
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Monotonicity of the least eigenvalue

If the domain shrinks, the eigenvalue increases:

Ω ⊂ ∆ implies λ∆ < λΩ
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Eigenvalue problems on the sphere

An eigenfunction, composed with N , is still an eigenfunction (but
not conversely). Therefore:
Passing to the sphere does not increase the least eigenvalue.
Therefore:
If the Gaussian image is contained in a hemisphere, then λmin > 2.
(The eigenvalue of a hemisphere is 2).
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N can be very complicated

N can in general define a multiple covering; in our work, N might
cover, or nearly cover, both the “east” and “west” hemispheres but
with many umbilical points (zeroes of ∇N), and it is difficult to
prove theorems about eigenvalues in the general setting of a
conformal map to the sphere.
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The least eigenfunction has one sign

Otherwise, its absolute value could be entered as a candidate in
computing the Rayleigh coefficient, and would not be smooth,
violating regularity results.
Also, at the boundary, the normal derivative of the least
eigenfunction is not zero. (Hopf lemma)
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Böhme, Tromba, and Tomi
Finiteness for relative minima (my work)

Putting a microscope on the branch point
Calculating the eigenfunction

H is not constant
Finiteness: the proof once we know H is not constant

The second variation of area
The eigenvalue problem associated with the second variation
Monotonicity of the least eigenvalue
The least eigenfunction has one sign
Dirichlet’s integral
The second variation of Dirichlet’s integral
The forced Jacobi directions
Connection between the second variations of A and E

Dirichlet’s integral

E(u) :=
1
2

∫
u2

x + u2
y dx dy

=
1
2

∫
u · ur dθ

The appropriate space is a Sobolev space of functions defined on
the boundary (or harmonic extensions thereof).
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Tangent vectors

A “tangent vector” in this space is a function k from S1 to R3

such that k(θ) is tangent to Γ at u(θ). These are the “directions”
in which you can take the first or second variation of E(u).
The “weak inner product” is given by

(h, k) :=
∫
hrk dθ
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The second variation of Dirichlet’s integral
The second variation is given by

D2E(u)[h, k] =
∫
h(kr − k̃θ) dθ

where k = λuθ and k̃ = λur.
The equation for the kernel of D2E(u) is then

k(kr − k̃θ)

This looks much prettier in the following form:

kz · uz = 0

These formulas are due to Tromba.
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The forced Jacobi directions

If the minimal surface u has branch points, let M be the number
in the Gauss-Bonnet-Sasaki-Nitsche formula: the sum of the orders
of interior branch points and half-orders of boundary branch
points. Then there is an 2M -dimensional subspace of the kernel of
D2(u), of the form

k = Re(iωzuz)

where iωz is meromorphic and has a pole of order ≤ m at each
interior branch point of order m.
You only get one instead of two at a boundary branch point
because the tangent vectors have to be tangent to the boundary.
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Tangential variations

Although usually only normal variations are considered with area,
you can also consider more general variations. It turns out that the
first and second variation only depend on the normal part.
But with E, the forced Jacobi directions are all exactly
tangential–they have zero normal component. Conversely, Tromba
showed that a tangent vector k with no normal component lies in
the space spanned by the forced Jacobi and conformal directions.

Michael Beeson Finiteness in Plateau’s Problem



Introduction
The second variation of area and Dirichlet’s integral
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The connection between D2A[u] and D2E[u]

(i) If k is in the kernel of D2E(u) then φ = k ·N is in the kernel
of D2A(u).
(ii) Conversely, if φ is in the kernel of D2A(u), then φ arises as
k ·N for some k in the kernel of D2E(u).
We don’t need part (ii), but it clarifies the situation.
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Böhme and Tromba’s global analysis

Böhme and Tromba applied nonlinear global analysis to the theory
of minimal surfaces. This is deep and beautiful work, and they
drew deep and beautiful consequences from it, but we need only
one thing from it.
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Compactness

Since the 1930s it has been known that, if Γ bounds infinitely
many minimal surfaces, there is a sequence un of them converging
to a minimal surface u bounded by Γ.
But thanks to Böhme, we know more: there must be (at least) a
one-parameter family u(t) of minimal surfaces, all bounded by Γ,
and real-analytic in t, x, and y jointly, for some interval of t values.
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Tomi’s theorem on absolute minima

Tomi’s theorem: finiteness for absolute minima and analytic
boundaries
Proof. If Γ bounds infinitely many absolute minima, then by
compactness, there is one which is not isolated; hence there is a
one-parameter family of minimal surfaces ut bounded by Γ. In
some neighborhood of t = 0, they all have the same E and the
same area, and hence are all absolute minima. By compactness
this family must loop, i.e. for some positive t we have ut = u0.
The set of t for which ut is an absolute minima is open and closed;
hence all the ut are absolute minima.
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Proof of Tomi’s theorem, continued
For each t, ut is in the kernel of D2E[ut], so φ = ut ·N is in the
kernel of D2A[ut], i.e., it is an eigenfunction. Here we use that ut

has no branch points, so ut is not a forced Jacobi direction.
Pick a point P some ways from the surfaces un and consider the
signed volume

V (t) :=
∫

(u− P ) · (ux × uy) dx dy =
∫

(u− P ) ·N dA

For some value of t this has a minimum. But
dV

dt
=

∫
ut ·N dA =

∫
φdA

cannot be zero, since φ, as the eigenfunction of the least
eigenvalue, has one sign. Contradiction, QED.
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The starting point of my work
If there are infinitely many relative minima bounded by Γ, then
again there is a one-parameter family of them. But now, there is
no immediate reason why this family cannot run into a minimal
surface with a branch point. The situation would be,

I a one-parameter family of minimal surfaces ut defined in the
upper half plane for t in some interval about 0.

I each ut is bounded by Γ and ut(0) = 0.
I Γ is tangent to the X-axis at the origin.
I when t = 0, u0 has a boundary branch point at the origin.
I when t > 0, ut is a relative minimum (of area and Dirichlet’s

integral)

Why can’t that happen?
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Some observations

I for t > 0 we have λ = 2 (since ut is a relative minimum and
ut is in the kernel)

I for t = 0 we also have λ = 2, as the eigenvalue is continuous.
But maybe u0 is not a relative minimum.

I while ut is in the kernel of D2A(u) for t > 0, it might be a
forced Jacobi vector when t = 0, and hence have no normal
component.
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Some more observations

Let the boundary branch point have order 2m. (It has to be even
since u takes the boundary monotonically.)

I For t > 0, the Gaussian area is about m hemispheres more
than for t = 0.

I The image of N lies very close to the plane X = 0 when t is
small, but it might wrap wildly around that great circle,
reversing direction many times, etc.

I if the image of the parameter domain includes the entire
upper hemisphere and a bit more, then λ > 2, contradiction.
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Plan of the proof

I Analyze the Weierstrass representation as a function of t

I Calculate ut and the eigenfunction φ = ut ·N
I use the fact that φ has one sign for t > 0 to get information

about u

Only after we carry out a few steps of this analysis can we discuss
the real difficulties of the proof.
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The Weierstrass representation as a function of t

Let f = 1uz − i2uz and g, the stereographic projection of N , be
the functions in the Weierstrass representation. The branch points
are the common zeroes of f and fg2. If the branch point at origin
when t = 0 is an interior branch point, there are no common
zeroes, and for t > 0 the zeroes of f are double. Hence the order
of the branch point is M = 2m and we define

I ai = ai(t) are the zeroes of f for i = 1, . . . ,m
I bi = bi(t) are the zeroes of fg2 for i = 1, . . . ,m+ k

Michael Beeson Finiteness in Plateau’s Problem



Introduction
The second variation of area and Dirichlet’s integral
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Attack of the alien branch points

In the boundary branch point case, there might be branch points
for t > 0, lying outside the parameter domain, but converging to
the origin as t > 0. In that case there will be some common zeroes
si of f and fg2, say N of them, and we let ai and bi be the other
zeroes of f and fg2, so that

f(z) = Π(z − ai)2Π(z − si)
fg2(z) = Π(z − bi)2Π(z − si)

and the ai are not equal to the bj for t > 0. All the ai and bj
converge to 0 as t→ 0.
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Analytic dependence of the ai on t

We want to have the ai, bi, and si depend analytically on t. This
follows from the theorem that “analytic sets are analytically
triangulable”. (An analytic set is locally the zeroes of a real
analytic function.) That is, the zero set of f , for example, is
triangulable, and the maps from the simplices to the zero set are
real-analytic. Several references to proofs of this fact are given in
my 1980 paper.
Then, after a reparametrization from the original t to a new
parameter, the ai depend analytically on t.
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The rate of convergence of the ai to zero

Each ai(t) then goes to zero as some power of t:

ai(t) = αit
γi

bi(t) = βit
some power

si(t) = σit
some power

and similarly for the bi and si. Let γ be the smallest of these
exponents. The “principal roots” are those that go to zero as tγ .
The rest (the “fast roots”) go to zero faster.
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The w-plane

We introduce
w :=

z

tγ

so that
z = tγw

Then the positions of the αi, βi, and σi in the w-plane are of
interest, and by removing powers of t, we can derive formulas for
various quantities of interest that are valid in the w-plane when
t = 0.
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The unit normal in the w-plane

As an example of the principle: on compact subsets of the w-plane
away from the αi, the unit normal N converges to (0, 0,−1) as
t→ 0.

Of course, for small positive t, the unit normal behaves wildly near
the αi. But this wild behavior is confined to smaller and smaller
neighborhoods of αi as t→ 0.

Even if there is a boundary branch point, for small t > 0 the unit
normal is confined to be very near the Y Z plane, as that tiny part
of Γ is almost on the X-axis.
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The case of an interior branch point

In the case of an interior branch point, the boundary is not
relevant in the w-plane–it recedes to infinity as t→ 0. Hence, for
small positive t, some disk D about αi does not meet the
boundary. For small enough t, the pole ai(t) = ai(t)/tγ , which
converges to αi as t→ 0, is inside that disk. Hence N takes on
the north pole near αi, for small positive t.
But on the boundary of D, N converges to (0, 0,−1). Hence on
the interior of D, N covers at least the upper three-quarters of the
sphere for small enough t. Then λ < 2, since more than a
hemisphere is covered. Contradiction!
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Some special cases of finiteness

Eliminating the interior branch point case was the main result of
my 1980 paper. Some cases of finiteness follow. For example, if Γ
lies on the boundary of a convex body, there can’t be boundary
branch points, so we have finiteness.
To answer a question raised by Tromba: Note that the question of
whether the branch point might be a false branch point did not
arise. Although we did appeal to the regularity theorems for t > 0,
we did not need anything about the hypothetical branch point at
t = 0.
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The case of a boundary branch point

Then we take the parameter domain to be the upper half-plane,
and the branch point is at the origin when t = 0. Then we cannot
finish the argument immediately, because all we know is that the
Gauss map takes on approximately m hemispheres near the origin
for t > 0. This “extra Gaussian area” disappears when t becomes
zero and the branch point term appears in the Gauss-Bonnet
formula. These coverings of hemispheres “pinch off” from the
Gaussian image as t goes to zero.

Michael Beeson Finiteness in Plateau’s Problem



Introduction
The second variation of area and Dirichlet’s integral

Böhme, Tromba, and Tomi
Finiteness for relative minima (my work)

Putting a microscope on the branch point
Calculating the eigenfunction

H is not constant
Finiteness: the proof once we know H is not constant

Calculating in the w-plane
Definitions of A, B, and S
The formula for the eigenfunction
The main obstacle
Equations for the case H constant

Calculating in the w-plane
Since we cannot complete the “eigenvalue argument”, the next
step is to compute the eigenfunction, and use the fact that it must
have one sign.
The eigenfunction is φ = ut ·N , and both ut and N can be
computed in terms of the roots ai, bi, and si. To get started we
note that

z − ai = tγw − αit
γ

= tγ(w − αi)

Thus the “fast roots”, that go to zero faster than tγ , will each
contribute just a factor of w2 to f(z), while the principal roots will
each contribute (w − αi)2.
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Definition of A, B, and S

We define

A(w) =
∏

(w − αi)

B(w) =
∏

(w − βi)

S(w) =
∏

(w − σi)

Everything of interest will be calculated in terms of A, B, and S.
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The formula for the eigenfunction
It is not possible in a one-hour talk to go through computations.
For example, to start the computation, we observe that
g = tkγB/A is the stereographic projection of the unit normal N ,
so B/A contains a lot of information about how the normal
behaves as t→ 0.
Here is the result of the computation of the eigenfunction:

φ = −1
2
t(2m+k+1)γ−1Im H

where

H(w) =
B
A

(2m+ 1)
∫ w

0
A2S dw − (2m+ k + 1)

∫ w

0
ABS dw
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The main obstacle

The formula for φ has the form −1
2 t

2m+k+1Im H(w), for a
function H that we can calculate in terms of the principal roots.
But H might turn out to be constant, so that Im H is identically
zero.
Why can’t that happen?
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Böhme, Tromba, and Tomi
Finiteness for relative minima (my work)

Putting a microscope on the branch point
Calculating the eigenfunction

H is not constant
Finiteness: the proof once we know H is not constant

Calculating in the w-plane
Definitions of A, B, and S
The formula for the eigenfunction
The main obstacle
Equations for the case H constant

A discouraging example

There is a family of minimal surfaces ut, all bounded by a straight
line, having a branch point when t = 0. This family exhibits some
of the local behavior we are trying to rule out. In 1980 I found this
family and thought it was the end of the line. I did not return to
the problem until 2000.
I have made 3d computer-graphics pictures of this family in which
you can fly around and observe the wild curvature near where the
branch point eventually appears. But φ = ut ·N is not of one sign
in the example, something I did not notice in 1982.
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Equations for the case H constant

It turns out that in case H is constant, a rather remarkable
equation must hold:

B
A

=
B0β

α

( ∫
A2S dw

)k/(2m+1)

where β is the product of all the βi and α is the product of the αi

(over the principal roots, so no of these are zero); and B0 is
coefficient of the leading term of fg2. This equation is not hard to
derive, by differentiating the equation for H.
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What is true if H is not constant

By analyzing the asymptotic behavior of H in the vicinity of the
origin, and again in the vicinity of each αi and βi, we prove that

I There is at least one principal ai or si (whether or not H is
constant)

I if H is not constant, all the roots αi, si, and βi are principal.

I if H is not constant, then B/A has either a simple zero or a
simple pole at each αi, or is analytic non-vanishing there.
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Gaussian area and boundary branch points
I A2S is real, so the αi and σi come in complex-conjugate pairs.
I All the αi (limits in the w-plane of poles of g) are on the real

axis. (Otherwise we could use the eigenvalue argument.)
I Near each αi, for small t, the Gaussian area in a small disk is

about m spheres.
I But maybe it’s all contributed in the lower half plane.
I We hope each αi contributes one hemisphere in the upper half

plane.
I That would make 2πm in the Gauss-Bonnet formula.
I Some of the αi could be equal.
I Some of the ai may be non-principal, i.e. go to zero faster

than tγ .
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The unit normal near the ai

I The “north pole” is (0, 0, 1)
I The “south pole” is (0, 0,−1)
I The “west pole” is (−1, 0, 0)
I The “east pole” is (1, 0, 0)

A root ai contributes Gaussian area if N covers either the east or
west pole near ai for arbitrarily small t. Since N restricted to the
boundary lies near the plane X = 0, this means it covers at least
(almost) a hemisphere near ai.
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The eigenfunction and Gaussian area
I The unit normal N does not cover both the east and the west

pole near any αi (in the upper half plane).
I This is proved by calculating a more exact formula for the

eigenfunction, valid even near the αi.

It turns out that at a point ξ where N takes on the east or west
pole, we have

2
t2m+1

φ = 1Nc(1 +O(ξ − αi)) +O(t)

where the constant c is nonzero. Here 1N is the first component
of N . So for small t, the sign of φ is the same as the sign of 1N .
But φ has to be of one sign in the upper half plane.
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If a principal root contributes Gaussian area, then H is not
constant

Suppose N covers the west pole near αi. Since N is a covering
map, we can go around the equator in either direction to reach
either of the two points (0, 1, 0) and (0,−1, 0), and trace out the
pre-image in the parameter domain. We must hit the boundary, or
else we will get past the plane X = 0 and reach the east pole,
contradicting the previous slide. Let the places where we hit the
boundary be called eq1(t) and eq2(t). These points converge to αi

as t→ 0 and since αi 6= 0, they both have the same sign.
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Making use of eq1(t) and eq2(t)

Now 2N can be calculated in terms of B/A, and if H is constant,
recall

B
A

= constant

( ∫ w

0
A2S dw

)k/(2m+1)

In a few steps of calculation, we show that 2N has the same sign
at eq1(t) and eq2(t), contradiction. Hence H is not constant.
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So what?

Now if we knew that some principal root had to contribute
Gaussian area, then we would know that H is not constant. But
all we can conclude is that if H is constant, then all the Gaussian
area must be contributed by the “fast” roots, the ones going to
zero faster than tγ .

After many mistakes, I eventually faced the fact that it is necessary
to analyze the fast roots, too–not just the principal roots.
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The rings of roots

Each root ai goes to zero according to some power of t. Arrange
these powers ti in descending order, so t1 = γ, the power of the
principal roots. Think of the roots as constituting “rings”
(although at least the ai lie close to the x-axis), with the larger γi

corresponding to the “inner rings”.
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A w-plane for each ring

We can introduce a w-plane for each ring, with z = tγiw. Fixing
one γi, there are “slow” roots, going to zero as the power γi or
slower, and “fast” roots, going to zero faster than tγi

The roots that go to zero slower that tγi go off to infinity in the
w-plane as t goes to zero, but they may have a big influence
anyway.
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The N -condition

The N -condition says that on compact subsets away from the αi,
the unit normal tends uniformly to the south pole:

N = (0, 0,−1) +O(t)

This is obvious for the principal roots, but not for the inner rings.
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Descending the rings of roots

The key observation (only made in 2008) is this: If H is constant

on one ring, then the N -condition holds on the next ring down.

Of course this requires some calculation to establish.

All that we did for the principal roots now carries over to the inner
rings as well, with more complicated expressions K and M
replacing k and 2m+ 1. In the paper it is only done once, instead
of twice, which may make it seem more complicated. In particular
the theorem that if H is not constant, all the roots are principal,
becomes, if H is not constant on a certain ring of roots, then no
root goes to zero faster than that ring.
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H is not constant on some ring

Some root (in some ring) must contribute Gaussian area, by the
Gauss-Bonnet formula. So if H is constant on all the slower rings
than that one, the N -condition will hold on that ring, and hence H
will not be constant on that ring. In other words, either H is
already not constant on some slower ring, or it is not constant on
the first ring that contributes Gaussian area.
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Böhme, Tromba, and Tomi
Finiteness for relative minima (my work)

Putting a microscope on the branch point
Calculating the eigenfunction

H is not constant
Finiteness: the proof once we know H is not constant

What is true if H is not constant
Gaussian area and boundary branch points
The unit normal near the roots
The eigenfunction and Gaussian area
If a principal root contributes Gaussian area, then H is not constant
The rings of roots
The N-condition
Descending the rings of roots
H is not constant
All the roots are principal and the alien branch points don’t occur

All the roots are principal and the alien branch points
don’t occur

Since N cannot cover both hemispheres near ai (in the upper half
plane), each ai contributes at most one hemisphere to the Gaussian
area. When H is not constant (on a given ring) then there are no
faster roots than that ring. True, there can be multiple ai

converging to the same αi, but the number of sheets over the
north pole is the number of those roots, so it works out to one
hemisphere per ai. Hence: to get the required 2mπ, there must be
m roots in the first ring where Gaussian area is contributed.
Hence that ring must be the first one, and what is more, the alien
branch points do not occur, since if they did, there would be fewer
than m of the ai.
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k/(2m + 1) is an integer

This computation takes ten pages in section 12 of my paper, and
the following slides, which must be skipped in a one-hour talk, just
give the first few steps.
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The parametrization of Γ

Γ′ =

 1
C2τ

q(1 +O(t))
C3τ

p(1 +O(t))


The first component is exactly 1 (no higher-order terms).
Γ is tangent to the X-axis, and p and q control how much it
deviates from a straight line.
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The plan to prove k/(2m + 1) is an integer

Compute ut on the boundary in terms of w in two different ways:

I From the parametrization of Γ, since

ut = uτ
dτ

dt

I From the Weierstrass representation, using

ut
∼=

(
∂

∂t
− γt−1w

∂

∂w

)
u
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Setting the two results equal

ut
∼=

 1
C2τ

q

C3τ
p

 γt(2m+1)γ−1

{
(2m+ 1)

∫ w

0
A2 dw − A2w

}

ut = γt(2m+1)γ−1


(2m+ 1)

∫ w
0 A2 dw − A2w

Im
(

(2m+ 1)
∫ w
0 Ã2 dw − Ã2w

)
tkγ(Im

(
(2m+ k + 1)

∫ w
0 ÃB̃ dw − ÃB̃w

)


We get a handle on the leading powers of t in Im Ã2 and Im ÃB̃.
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Sigma

σ :=
∫ w

0
Ã2 dw

Note that σ is defined using Ã, not A, so it depends on t and it
has an imaginary part on the boundary. Except for a power of t, σ
is close to arc length on Γ, which is close to X.
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Equating the two expressions
The result of equating the two expressions for the second
component of ut is

C2t
(2m+1)qγσq

(
(2m+ 1)σ − A2w

)
∼= Im

(
(2m+ 1)σ − Ã2w

)
The left side isn’t zero, since when H is not constant, there is at
least one principal ai. (In fact all the ai are principal.)
This is just the start of the ten-page computation. For the rest of
it, you must read the paper. Here I emphasize that the whole use
of the boundary parametrization is in proving that k/(2m+ 1) is
an integer, and that computation is independent of the rest of the
paper, except for the fact that if H is not constant, then all the ai

are principal.
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The H equations as a differential equation for B/A
Let H̃ be the eigenfunction of ut. (The tilde indicates
t-dependence.) Then, differentiating the equation for H̃, we find
that f = B̃/Ã satisfies the differential equation

H̃w = (2m+ 1)f ′
∫ w

0
Ã2 dw − kÃ2f

Let

σ :=
∫ w

0
Ã2 dw.

Then the equation above is

H̃w = (2m+ 1)f ′σ − kσwf (1)
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A more convenient differential equation

After some manipulation we find another form of the equation.

Hw = (2m+ 1)σk/(2m+1)+1

(
f

σk/(2m+1)

)′

The fraction f/σk/(2m+1) is not identically 1, since then Hw would
be zero, and H would be constant, but we proved that H is not
constant.
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Asymptotic behavior at infinity

Looking at the behavior for large w, we have

σ =
∫ w

0
A2 dw =

w2m+1

2m+ 1
+O(w2m)

σk/(2m+1) = c3w
k +O(wk−1) for some c3

σk/(2m+1)+1 = c3w
2m+k+1 +O(w2m+k)

f = B/A = wk +O(wk−1)

Hence f/σk/(2m+1) has both numerator and denominator
asymptotic to wk.
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How we use that k/(2m + 1) is an integer

Whether or not k/(2m+ 1 is an integer, we have for large w

f

σk/(2m+1)
= 1 + cw−J +O(w−J−1) (2)

for some J ≥ 1 and constant c. But since k/(2m+ 1) is an
integer, we are dealing with a rational function, whose numerator
and denominator are polynomials of degree k. In that case we have
J ≤ k, since the worst case (largest J) is when the numerator and
denominator have all their corresponding coefficients the same
except the constant coefficient, and in that case J = k. For a
more rigorous proof, see the paper.
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For example

ωk + 3
ωk + 5

=
1 + 3w−k

1 + 5ω−k

∼= (1 + 3ω−k)(1− 5ω−k)
∼= 1− 2ω−k

illustrating that J = k in this case. There is nothing special about
2 and 5.
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Integrate the equation to calculate H

Hw = (2m+ 1)σk/(2m+1)+1

(
f

σk/(2m+1)

)′

= (2m+ 1)w2m+k+1(1 + cw−J +O(w−J−1))′

= (2m+ 1)w2m+k+1(−Jcw−J−1 +O(w−J−2))
= −J(2m+ 1)cw2m+k−J +O(w2m+k+J−1)

Integrating, we have

H =
−J(2m+ 1)c

2m+ k + J + 1
w2m+k−J+1 +O(w2m+k−J)
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The final contradiction
Since Im H must have one sign in some neighborhood of infinity,
we must have 2m+ k − J + 1 = ±1. That is,
J = 2m+ k + 1±−1. Since k/(2m+ 1) is an integer, and hence
J ≤ k as shown above, subtracting J from each side we have

0 = 2m+ 1 + (k − J)± 1
≥ 2m+ (k − J)
≥ 2m since k − J ≥ 0
≥ 1

contradiction, since m ≥ 1. This contradiction completes the
proof.
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