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No area in Euclid. Instead, “equal figures”

◮ The word area never occurs in Euclid’s Elements, despite the
fact that area is clearly a fundamental notion in geometry.

◮ Instead, Euclid speaks of “equal figures.”

◮ Apparently a “figure” is a simply connected polygon, or
perhaps its interior.
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What is a figure?

◮ Does it have an interior? or is it just made of lines?

◮ Does it have to be a polygon, or can it have curved
boundaries?

◮ Does a circle count as a figure? An ellipse?

◮ Does it have to be convex?
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Euclid’s proof of Prop. I.35, parallelograms in the same

parallels with the same base are equal.
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Euclid wants to prove the parallelograms ABCD and BCFE are
equal. He proves the triangles ABE and DCF are congruent.
Implicitly, he assumes DEG and DGE are equal figures. Then
“subtracting equals from equals”, the yellow quadrilaterals are
equal. Then, “adding equals to equals”, he adds triangle BCG
(implicitly assuming BCG is equal to BGC) to arrive at the
desired conclusion.
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Euclid’s common notions

◮ Things which are equal to the same thing are also equal to
one another.

◮ If equals be added to equals, the wholes are equal.

◮ If equals be subtracted from equals, the remainders are equal.

◮ Things which coincide with one another are equal to one
another.

◮ The whole is greater than the part.

Euclid uses only the first three with figures.

He also uses “halves of equals are equals” with no justification
whatever.
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Equal figures are not =

◮ a = b means a can be substituted anywhere for b.

◮ That is not true of “equal figures” or “equal lines” for that
matter.

◮ We use “congruence” for lines instead of =.

◮ What shall we use for equal figures?
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Can we use area to define “equal figures”?

◮ How about, two figures are “equal” if they have the same
area?

◮ But then we would need to define area.

◮ Euclid probably knew that he did not know how to define area.

◮ So he appealed to the common notions about “equal figures”.

◮ But that hasn’t passed muster since at least 1882, now that
we understand “equality” better, and have some idea of the
difficulties in adding and subtracting and even defining
regions.
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Area in Greek mathematics

◮ The Greeks never multiplied lengths by lengths to get lengths.

◮ A length times a length is a rectangle.

◮ Multiply three lengths to get a solid.

◮ Of course engineers and architects calculated with areas. But
areas were numbers.

◮ Heron of Alexandria had no problem multiplying four numbers
to get an area in his famous triangle formula. But not a
length.

◮ When Archimedes calculated the area of a circle, he didn’t
mention the word area. Instead he showed a circle is equal to
a certain rectangle
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Possible ways to define area or “equal area”

◮ Equidecomposition (cutting into triangles).

◮ Integral calculus

◮ Axiomatize the properties of area instead of defining it.

These options all involve non-geometric objects, such as natural
numbers or real numbers. We also consider:

◮ Descartes’s geometric arithmetic. Define multiplication by
proportions and prove its properties by Desargues’s and
Pascal’s theorems.

Segment arithmetic was emphasized by Hilbert and Tarski in their
well-known formalizations of geometry. But it does not lead to a
definition of “equal area”.

9 of 47



Area of a triangle in elementary school

Teacher: The area of a triangle is half the base times the height.

Student: OK. But then why do I get the same answer after turning
the triangle so a different side is the base? The height and width
are different. For example if the sides are (3, 5, 7):

3 · 4.33/2 = 6.49
01234567
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7 · 1.86/2 = 6.49

Teacher: It’s because the area is a property of the triangle itself,
independent of the orientation.

Student: How do you know that?

Teacher : By the theorem on the change of variable in a double
integral under a transformation of the domain of integration. See
Apostol volume 2, pp. 88-89. The Jacobian of a rotation is 1.

Student: Oh, yes. Of course. Now I understand.

Half the base times the height won’t work as a definition.
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Multiplication, area, and equal figures

◮ Being able to multiply doesn’t enable you to define area.

◮ Area wasn’t defined until double integrals were understood.

◮ Therefore segment arithmetic doesn’t enable you to define
area.

◮ Neither Hilbert nor Tarski ever wrote about Euclid’s notion of
equal figures, as far as I know.

◮ Thus neither Hilbert nor Tarski proved I.35, or Euclid’s version
of the Pythagorean theorem, in their axiom systems.

◮ Their systems proved c2 = a2 + b2, which is different. Euclid
showed how to cut up the three squares into equal pieces.
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Proof-checking Euclid

In 2017-2018, Narboux, Wiedijk, and I computer-checked proofs of
about 235 propositions, including the 48 propositions of Euclid
Book I. Our aims were

◮ To use axioms as close as possible to Euclid’s.

◮ To ensure that all proofs were absolutely correct, by computer
proof-checking.

◮ To use proofs as close to Euclid’s as possible, while correcting
gaps and errors.

To do this, we introduced 16 axioms about equal figures. We were
not the first to do that: Hartshorne’s textbook does something
similar, and deZolt before him.

Actually, we introduced axioms about ET (equal triangles) and
EF (equal quadrilaterals), which is enough for Book I.
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Sixteen Axioms for Equal Figures

◮ Four cut axioms. If we cut equal triangles off of equal
triangles [or quadrilaterals] getting triangles the results are
equal. Also if we get quadrilaterals, the results are equal.

◮ Two paste axioms. If we paste equal triangles onto equal
triangles [or quadrilaterals] getting triangles the results are
equal. Also if we get quadrilaterals, the results are equal.

◮ Congruent triangles are equal.

◮ halvesofequals. If equal quadrilaterals are each divided into
equal triangles by their diagonals, then all four triangles are
equal.

◮ ET and EF are symmetric and transitive.

◮ ETpermutation. ABC is equal to BCA.

◮ EFpermutation. ABCD is equal to BCDA, DCBA, etc.

◮ Two de Zolt axioms. If we cut a triangle off a triangle getting
a triangle, then the original and new triangles are not equal.
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Axioms and Intuition

I was not satisfied with axiomatizing “equal figures”.

◮ Axioms are supposed to correspond to intuition and express
evident truths.

◮ The notion of “equal figures” only makes intuitive sense as
“equal areas”, but we can’t define or axiomatize area in the
style of Euclid.

◮ The axioms for “equal figures” are ad hoc.

◮ Our first version was even inconsistent, due to ambiguities
about whether figures have to be convex or not. Connecting
two vertices of a non-convex polygon might not divide it into
two parts.

◮ Besides, there’s nothing like equal figures in the famous
axiomatizations of Hilbert and Tarski, which are widely
supposed to be the modern replacement for Euclid.
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So how can we avoid axioms for equal figures?

◮ We can’t define area without integral calculus.

◮ But maybe we can define “equal figures”.

◮ Perhaps even in way the Euclid might have done.

Yes! That can be done. That is the work I will now describe.
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Definition of Equal Rectangles
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Place copies of two given rectangles as BEFG and BMLA with
two sides collinear. The other sides (extended) meet by Euclid 5
forming a large rectangle. Then BEFG and BMLA are defined to
be equal if B(H,B,K). (Left, unequal. Right, equal.)
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Euclid I.44

◮ The definition of equal rectangles has the same picture as
Euclid I.44, except I.44 has a parallelogram, not just a
rectangle.

◮ Hence, the definition is definitely “in the spirit of Euclid.”

◮ Euclid could have given this definition.
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Definition of Equal Triangles
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ABC is equal to abc if EBG is a straight line.
C lies on line KD, not necessarily between K and D.
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Definition of Equal Quadrilaterals
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Use rectangles parallel to (either) diagonal.
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What counts as a quadrilateral

◮ Either convex (diagonals meet at a point between the
vertices), or

◮ “really a triangle” (one vertex between the two adjacent).

◮ Non-convex quadrilaterals do not occur in Euclid Books I-IV.

◮ Convex quadrilaterals definitely lie in a plane because of the
meeting diagonals.

20 of 47



The task at hand

◮ Then we “just” have to verify that all the 16 equal-figures
axioms hold using these definitions.

◮ That turned out to be non-trivial.

◮ But in the end, we succeeded.
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Verification that ABC and BCA are equal

◮ The green triangles have
equal angles at B.

◮ Therefore the pink triangles
have equal angles at B.

◮ The pink triangles are right
triangles, so their sides are
proportional.

◮ Therefore BF : EF = c : a.

◮ Therefore triangles BEF
and GBC ′ are similar.

◮ Therefore EBG is a straight
line.

AK G

C

D

E

B

F
L

A′

C ′

cb

a

c b

a
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Area in school, take two

Student: Why do I get the same
answer when I take a different
side as the base?

Teacher: Let’s see how that
works out. Look at this picture:
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Base time height is the same, whichever side is the base

◮ We have just given a proof, using only elementary geometry,
of that fact.

◮ The only proof I knew before used double integrals.

◮ Note that the statement does not mention the word “area.”

◮ To state it in geometry, we have to first define segment
arithmetic.

◮ Since Hilbert and Tarski did that, the proof can be given in
their systems.

◮ There had to be some proof, by known meta-theorems, but
that proof might require the completeness axioms (about
filling Dedekind cuts).

◮ Whether the definition of area as a double integral can be
given in geometry we do not know. Not directly, since
integrals involve natural numbers and limits.
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Proportionality

◮ We need proportionality to verify ABC = BCA.

◮ Also to verify that “equal rectangles” is transitive.

◮ Rectangle with (width, height) (a, b) is equal to (c, d) iff

b : c = d : a

◮ That focuses attention on a Euclidean theory of proportions.

◮ All the other things we need to prove about equal triangles,
equal rectangles, and equal quadrilaterals require only
propositions from Book I before equal figures.
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Proportionality in Euclid

◮ Proportion is treated in Book VI.

◮ It depends on Eudoxes’s theory of “magnitudes” in Book V.

◮ That in turn depends on Archimedes’s axiom, which we don’t
want to use.

◮ Besides, Prop. VI.2 uses the principle ABC = BCA, again
(as in I.35) without explicit mention. Hence, trying to use
Euclid’s Book VI to verify ABC = BCA would be circular.

◮ Therefore Book VI is irrelevant for our purposes.
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Early proportion theory

◮ It turns out we are far from the first to be interested in
developing the theory of proportions by simpler means.

◮ This has been worked on by Hessenburg, Kupffer, Schur,
Dehn, Hilbert, and finally Bernays, over the time period from
1893 to 1956.

◮ Bernays and Kupffer proved everything we need, by means
similar to those used in Euclid Book I before equal figures are
introduced.

◮ Bernays wrote Supplement II for the 8th edition of Hilbert’s
Foundations of Geometry (1956). He called it A simplified

development of the theory of proportion.

◮ In §24 of Hilbert’s book, Hilbert treated proportion using
segment multiplication, which we don’t want to use. But
Bernays and Kupffer used only early Euclidean methods.
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Kupffer

◮ Karl Kupffer gave two proofs of the “interchange theorem”
that a : b = c : d if and only if a : c = b : d in 1893.

◮ In 1902, Schur wrote a letter to the Mathematische Annalen

giving Kupffer’s proofs (with credit).

◮ Kupffer’s first proof is in Bernays, credited not to Kupffer but
to F. Enrique. That turns out to be incorrect as in Enrique’s
book, Kupffer is cited.

◮ That chapter of Enrique’s book is written by another author,
not Enrique, and that author says Kupffer’s first proof is
actually due to Weierstrass, but gives no citation, so this has
“fake news” status, it seems.
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Definition of Proportion
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Here AB : AC = Ab : Ac because BC || bc.

The definition is “up to congruence”. That is, x : y = u : v if
segments x, y, u, v are congruent to segments AB, AC, Ab, Ac as
shown.
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Definition of Proportion

◮ We defined AB : CD = ab : cd as an 8-argument relation on
points.

◮ It induces a 4-argument relation on (congruence classes of)
segments.

◮ We did not define the ratio a : b or AB : ab, so the use of =
is just a shorthand, to conform to historical notation.

◮ Bernays defined a : b to be the acute angle opposite a in a
right triangle with legs a and b. Then = is angle congruence,
so the parts of the expression are defined. But this is an
irrelevant detail. Only the 8-ary relation is ever used.
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What is proportion theory?

These are the important theorems (as named by Bernays)

◮ interchange If a : b = p : q, then a : p = b : q.

◮ fundamental theorem If two parallels delineate the segments
AC and ac on one side of an angle and AB, Ab on the other
side of the angle, then AB : Ab = AC : Ac.

◮ uniqueness of the fourth proportional For each a, b, c, there is
exactly one segment x such that a : b = c : x
(up to congruence).
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The fundamental theorem
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If BC || bc then then AB : Ab = AC : Ac.

◮ It is a consequence of Desargues’s theorem.

◮ Whether it implies Desargues’s theorem in some simple way
we do not know.

◮ Bernays proved it by much more elementary means.
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A corollary-what we needed to prove ABC = BCA

If two right triangles have their hypotenuses and one leg
proportional, then their corresponding angles are equal.
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AB : Ab = AC : Ac implies angles CAB and cAb are equal.

AB : Ab = AC : Ac by hypothesis

AB : Ab = AC : AP by the fundamental theorem, since BC || bc

Ac = AP by the uniqueness of the fourth proportional

c = P not quite trivial, but it does follow!
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Kupffer and Bernays, final remarks

◮ The proofs in question are very pretty, but

◮ they are not quite simple, and

◮ they are between 60 and 230 years old, and

◮ we didn’t contribute anything new to “early proportion
theory”.

Since time is limited, we will focus on our own contributions and
say no more about Kupffer and Bernays.
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Cutting off equal rectangles from equal rectangles

Cutting off equal rectangles (pink) from equal rectangles (pink and
blue) leaves equal rectangles (blue).
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Euclid would have justified this by his common notion, “if equals
be subtracted from equals, the remainders are equal.”
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Paste equal (blue) rectangles onto equal (pink) rectangles
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◮ The white rectangles are congruent

◮ The green rectangles are congruent

◮ The yellow rectangles are congruent

◮ The angles of the green and yellow triangles both match those
of the white triangles

◮ Hence all the triangles have the same corresponding angles

◮ Hence the diagonal lines (defined by their upper 3 points)
both pass through the lower left corner too.
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Axiom paste3

paste3 is the case of “if equals be added to equals, the wholes are
equals”, when the equals being added are triangles with a common
edge, and the wholes are quadrilaterals.
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If the blue triangles are equal, and the yellow triangles are equal,
then ABCD and abcd are equal.
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Verifying axiom paste3

We draw the circumscribing rectangles:
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Then the proof reduces to pasting equal rectangles onto equal
rectangles.
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Halves of equals are equal
If equal quadrilaterals are each divided along a diagonal into equal
triangles, then all four triangles are equal.

b

b

b

b b b

b

b

bb

bM b

b b

The pink quadrilateral and light blue quadrilateral are equal, and
each is divided in two equal triangles. Then M is the center of the
lower left rectangle, so the pink and blue triangles are equal.

39 of 47



Equal rectangles are also equal quadrilaterals
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Triangle ABD is equal to abc as halves of equal rectangles, by
definition of equal triangles. One circumscribed rectangle of
triangle ABD is half of the circumscribed rectangle of ABCD,
and one circumscribed rectangle of triangle abc is half of the
circumscribed rectangle of abcd. Then by paste3, quadrilaterals
ABCD and abcd are equal.
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Prop. I.35, proved from the new definitions and theorems

We can use I.37 (triangles with the same base in the same parallels
are equal) since that follows immediately from the definition of
equal triangles.
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By I.37, triangles ABC and BCF are equal, since they are
triangles with the same base and in the same parallels. By I.34, the
diagonals AC and BF divide the parallelograms into equal
triangles. By doublesofequals (a special case of paste3), the
parallelograms are equal.
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Every quadrilateral or triangle is equal to half its

circumscribed rectangle
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ABCD is equal to half of PQRS, namely GHRS
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Because the blue quadrilaterals are all equal
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Those are the main ideas

With those tools, it is possible to complete the proofs of Euclid
I.43, I.45, and the rest of the equal-figures axioms.
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A Euclidean theory of area

◮ Prop. I.45 allows to construct a parallelogram with one angle
specified that is equal to a given quadrilateral.

◮ The same method of proof, taken one step further, could have
allowed Euclid to construct a parallelogram with one angle
and one side specified, equal to a given quadrilateral.

◮ Perhaps Euclid thought that was so obvious that he did not
need to spell it out.

◮ But it could be used to define “equal area.” Namely,
Two figures have equal area, if they are both equivalent to the
same rectangle.

◮ If one side of the rectangle is regarded as a linear measuring
unit, the other side gives the area of the figure measured in
square units.

◮ This way, an area would be a rectangle, not a number or a
line.

◮ But Euclid did not take this step.
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Additivity of area

◮ Using that definition of area, we proved a theorem expressing
the additivity of area.

◮ It only applies to “figures” that are convex quadrilaterals or
triangles.

◮ But it could be generalized.

◮ We used it to prove a conservative extension theorem:

Theorem. Any theorem not mentioning “equal figures” that can

be proved with the aid of the equal-figures axioms, can also be

proved without those axioms, using the defined notions of equal

triangle and equal quadrilateral.
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Conclusions

We have given a definition of “equal figures” in the spirit of
Euclid, using a diagram similar to the diagram for Prop. I.44. The
fundamental properties of this defined notion seem to require (parts
of) the theory of proportion. Our work then fell into two parts:

◮ Using Euclid’s methods, as well as the elementary theory of
proportions, we proved all the theorems of Book I, and all the
equal-figures axioms, using the defined notion of “equal
figures.”

◮ We then showed, using theorems of Kupffer and Bernays, that
the required theory of proportions can also be developed using
the methods of Euclid Book I.

The final result is that it is possible to remove the “equal figures”
axioms from the formalization of Euclid Book I that we
computer-checked, replacing them with the new definitions and
theorems.
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