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Euclid was the “gold standard” of rigor for millenia.

◮ The Elements of Euclid set the standard of proof used by
Isaac Newton in his Principia.

◮ Abraham Lincoln claimed to have read the first six books of
Euclid thoroughly and learned from them how to
“demonstrate” something in court. He referred to Euclid
repeatedly in the Lincoln-Douglas debates.

◮ The Elements also inspired the form of the American
Declaration of Independence. Jefferson continued reading
Euclid all his life.
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Flaws in Euclid, and fixing them

◮ Proclus (AD 150) already had complaints.

◮ Starting in the 1700s, some mathematicians focused on the
perceived flaw that the Fifth Postulate (the “parallel
postulate”, or “Euclid 5”) was less intuitively evident than the
other four.

◮ That led to more care with proofs and eventually to
non-Euclidean geometry.

◮ In the modern era, beginning already in the nineteenth
century, the standards of proof in mathematics became more
demanding. Italian and German geometers studied the axioms
carefully.

◮ Pasch, Pieri, and Peano made fundamental contributions,
especially the need for the notion “between” and axioms
about it.
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What is proof-checking?

◮ It is not (mere) calculation (“computer algebra”).

◮ A (formal) proof is a sequence of symbols combined according
to certain rules.

◮ Hilbert’s “tables, chairs, and beer mugs” remark is relevant.

◮ The rules are simple and a computer can check if a given
sequence of symbols does or does not follow the rules.

◮ Typically there are four to ten more steps in a formal proof
than in a detailed textbook proof, as the inferences are
smaller.

◮ Journal proofs of course are even less detailed.

◮ To construct a formal proof one usually proceeds interactively,
as it’s difficult not to make errors. Hence “ITP”.

◮ “ATP” means “automatic” theorem proving. Get the
computer to find the proof. ITP tries to use ATP to fill in the
tiny steps.
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State of the art in proof-checking

◮ The programs used for ITP are called “proof assistants”.

◮ There is a book The 17 Provers of the World by my co-author
Freek Wiedijk. Some of the 17 are ATP only; many are ITP.

◮ The most famous three are HOL Light, Coq, and Isabelle.

◮ Most of undergraduate mathematics has been formally
checked. Each prover has “libraries” of already-proved
mathematics.

◮ There is a list of 100 famous “big” theorems. People have
been “knocking them off” for 20 years now. Most are proved.

◮ That list includes the four-color problem. Proof-checking the
four-color problem is quite different than using a computer to
make calculations in hundreds of different cases.

◮ In 2013 an international collaboration of hundreds of
mathematicians and computer scientists completed
proof-checking the Kepler Conjecture, which is now without a
doubt Hales’s theorem.
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Proof-checking Euclid

◮ Up to now, nobody has tried to check the proofs of Euclid.

◮ It is our opportunity. We happen to exist at the historical
moment when proof-checking has come of age.
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Aims of this work

◮ Fix Euclid’s axioms (and common notions), using an axiom
system rather close to Euclid’s, but including some axioms
about betweenness and circles that Euclid neglected to state.

◮ Give correct proofs of all the propositions in Book I from the
new axioms, following Euclid’s proofs as closely as possible.

◮ Show that those proofs are indeed correct by checking the
proofs using the proof-checking programs HOL Light and Coq.
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Proof-checking Euclid

There is some bad news and some good news:

◮ Euclid’s axioms are imprecise and insufficient.

◮ Euclid’s proofs have gaps and outright errors.

◮ Euclid’s definitions are fairly precise.

◮ Euclid’s proofs are fairly detailed.
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Proposition I.1, equilateral triangle construction

b b
A B

C

Why do the circles meet at C?
None of Euclid’s postulates guarantees it.
The problem here is a missing axiom, not a mistake in reasoning.
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Proposition I.1, a second blemish

b b
A B

C

Why do the three points form a triangle? That is, why are they
not collinear?

◮ If not then one of them must be between the other two.

◮ We need: if B is between A and C then AB and AC are not
equal.

◮ So this theorem should come before Euclid’s first proposition.
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Prop. I.9, Euclid’s bisection of angle ABC

b b

A

B

C

b

b

P

◮ Construct P by I.1 so ACP is equilateral.

◮ Then BP is the bisector.

◮ Oops! What if B and P are the same point?

◮ Then could we just take “the other equilateral triangle” ?
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Prop. I.9 continued

b b

A

B

C

b

b

P

◮ Prop I.1 only claimed one equilateral triangle, not two.
◮ To get two we would need a stronger circle-circle axiom.
◮ Anyway even if we did that there is another difficulty: Why is

the red line in the interior of the angle? That is, why does the
red line meet AC?

◮ Euclid wishes to use I.9 to conclude in I.10 that the red line
meets AC. But he has not proved it in I.9.
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There is no dimension axiom in Euclid.

◮ Euclid Book XI is about three-dimensional geometry. He
wants to develop the theory of the Platonic solids.

◮ Therefore Euclid is not meant to be about plane geometry
only.

◮ For example the definition of parallel lines is, lines that lie in
the same plane and do not meet.

◮ Therefore every theorem should be true in 2-space and in
3-space.

◮ In 3-space, “circles” are really “spheres”.

◮ Therefore on AB there might be not just two but infinitely
many equilateral triangles.
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Fix I.9 by using a strong circle-circle axiom?

◮ To do so, we would have to assume that two circles meet in
two points P and Q such that the line PQ meets the line
joining the centers of the circle. That amounts to assuming
that segments and angles can both be bisected.

◮ If we had no other way to prove I.9 and I.10 but to assume
them, then we would have had to do it that way.

◮ If this problem was pointed out in the literature before 2016, I
do not know where.

◮ Luckily, we can prove I.9 and I.10 another way
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Gupta’s midpoint theorems

◮ Tarski’s student Gupta earned his Ph. D. at Berkeley in 1965.
His amazing thesis contained enough material for at least
three theses.

◮ His most amazing result is that it is possible to construct both
dropped and erected perpendiculars without using circles at

all.

◮ This result goes far beyond Euclid in difficulty and we do not
need it.

◮ Instead we use his simple and beautiful proof that the base of
an isosceles triangle has a midpoint.

◮ That gives us I.10, the bisection of a segment, and from that
we get I.9, the bisection of an angle.

◮ So I.10 and I.9 have to be proved in a different order than
Euclid claimed.

◮ Before 1965, the “proofs” of I.9 and I.10 were irremediably
defective. This is more than a “blemish.”
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Euclid’s Axioms

We now discuss the axioms of geometry. First we review Euclid’s
framework.

◮ Primitive notions. Euclid tries to define everything, whereas
today, we wish to start with a few undefined notions.

◮ Euclid never used his definitions of point and line, in effect
taking those notions as undefined.

◮ Common notions. These amount, in today’s terms, to equality
axioms, plus things like “the whole is equal to the sum of the
parts” and “the whole is not equal to the part.” The word
“equal” is used for points, lines, angles, and “figures”
(polygons).

◮ Definitions. These look fairly modern.

◮ Postulates. Euclid had five.
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Euclid’s postulates

◮ To draw a straight line from any point to any point.

◮ To produce a finite straight line continuously in a straight line.

◮ To describe a circle with any center and radius.

◮ Euclid 4: All right angles are equal

◮ Euclid 5: if a straight line falling on two straight lines makes
the interior angles on the same side less than two right angles,
the two straight lines, if produced indefinitely, meet on that
side on which are the angles less than the two right angles.
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What Euclid omitted

◮ Betweenness, written B(a, b, c), meaning that a, b, and c are
distinct points on a line with b between a and c.

◮ Pasch’s axiom (or axioms) about betweenness, introduced by
Pasch in 1882 and refined by Peano in 1889.

◮ Other axioms about betweenness, about the order of points
on a line.

◮ An axiom permitting a proof of the SAS congruence criterion,
which Euclid tried unsuccessfully to prove in I.2.

◮ A line-circle axiom is also needed (in addition to circle-circle).

◮ Since equality of lines is not really equality, the common
notions don’t really cover the required axioms about equality
of lines. In other words, those notions are not “common”
enough to remain unstated.
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Our framework in which to formalize Euclid

◮ A first-order theory with variables of two sorts: points and
circles.

◮ Angles are treated as given by three points. Thus, like Euclid,
we speak of “angle ABC”.

◮ Lines are treated as given by two points, as in line AB. As in
Euclid, lines always have endpoints, but can be extended.

◮ The primitive relations are “congruence” and betweenness.

◮ Congruence is a 4-ary relation between points, written
AB = CD. We follow Euclid in using the word “equality”
instead of “congruence”.

◮ We want to have variables for circles, even though Euclid did
not. Euclid repeatedly fell into error by naming a circle by
three points, such as ABC, where point C has not really been
proved to exist. are repaired by saying “let K be the circle
with center C and radius AB.”
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Our axioms (selected by us, but at least a century old)

◮ Betweenness axioms about the order of points on a line. We
call these the “linear betweenness axioms.”

◮ Congruence axioms, including a line-extension axiom.

◮ Two forms of the Pasch axiom, “inner Pasch” and “outer
Pasch”, introduced by Peano in 1890.

◮ Tarski’s 5-segment axiom, which enables us to prove SAS.

◮ line-circle and circle-circle

◮ Euclid 5

◮ We do not have Euclid 4 (all right angles equal) as it can be
proved.

◮ Thus we have supplied what Euclid omitted, and nothing

more.
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The 5-line axiom

d

a b c

D

A B C

If the four solid lines on the left are equal to the corresponding
solid lines on the right, then the dashed lines are also equal.

◮ The conclusion is, in effect, the congruence of triangles dbc
and DBC.

◮ The hypothesis expresses the congruence (equality, in Euclid’s
phrase) of angles dbc and DBC by means of the congruence
of the exterior triangles abd and ABD.

◮ The 5-line axiom is a points-only version of the SAS triangle
congruence theorem.
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History of the five-line axiom

◮ Our version of the five-line axiom was introduced by Tarski (in
1927), although we have changed non-strict betweenness to
strict betweenness.

◮ The key idea (replacing reasoning about angles by reasoning
about congruence of segments) was introduced (in 1904) by
J. Mollerup.

◮ Mollerup (without comment) gives a reference to Veronese
1891.

◮ Veronese does have a theorem (on page 241) with the same
diagram as the 5-line axiom, and closely related, but he does
not suggest an axiom related to this diagram.
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Pasch’s axiom and Peano’s improved versions

◮ Pasch 1882 introduced the axiom that bears his name, in the
form that says that if a line enters a triangle through one side,
it must exit through another side (or vertex).

◮ That version is only true in a plane, which is not to be
assumed in Euclid.

◮ Seven years later, Peano introduced what are now called
“inner Pasch” and “outer Pasch”, which work without a
dimension axiom.

◮ Peano wrote everything in formal symbols only, and eventually
bought his own printing press to print his books himself.
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Inner and outer Pasch

Line pb meets triangle acq in one side ac, and meets an extension
of side cq. Then it also meets the third side aq. The open circles
show the points asserted to exist.
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Gupta’s “little midpoint theorem”

We show how Gupta used inner Pasch to construct the midpoint
M of line AB, given AB is the base of an isosceles triangle ABC.
Namely, construct first F and then M by inner Pasch.
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Then AD = BE by the 5-line axiom applied to ACBD and
BCAE. (The proof is by no means done; we do not finish it here.)
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Euclid’s Postulate 5, the “parallel postulate”

We give a “points only” version, not mentioning angles.

Transversal pq of lines M and L makes corresponding interior
angles less than two right angles, as witnessed by a. That is
expressed simply by B(r, a, q). The shaded triangles are assumed
congruent. That is, their corresponding sides are equal. Then M

meets L as indicated by the open circle.
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Equal Figures in Euclid

◮ Euclid used the word “figure” to mean what we now call a
simple closed polygon.

◮ Book I needs only triangles and quadrilaterals.

◮ Euclid used the word “equal” to denote a relation between
figures that he does not define.

◮ Nor did Euclid give any explicit axioms about“equal figures”;
he treated these as special cases of the common notions, such
as “the whole is equal to the sum of the parts”, where the
“parts” are figures and the “sum” is the union.

◮ Occasionally he uses without explicit mention a few further
axioms, such as “halves of equals are equal.”
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Formalizing “equal figures”

◮ Some textbooks try to define “equal figures” as “figures with
equal area.”

◮ Euclid probably did not do that because he did not know how
to define “area”.

◮ We do not do that since defining area requires segment
arithmetic, which takes us too far from Euclid.

◮ In effect Euclid axiomatizes the notion. So do we.

◮ Euclid appealed to the common notions, saying “the whole is
equal to the sum of the parts” when he probably meant, “the
area of the whole is the sum of the areas of the parts.”

◮ Similarly, “the part is not equal to the whole” for “the area of
the part is not equal to the area of the whole.”

◮ But Euclid couldn’t define “area” so he skirted the issue.

◮ The theory of segment arithmetic has been formalized in Coq
already, so we could use that, but instead we follow Euclid,
stating explicitly the axioms he uses.
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Formalizing “equal figures”

◮ Axiomatizations in the literature either use real numbers or
natural numbers. We gave a first-order axiomatization.

◮ We used ETABCabc to express “ABC and abc are equal
triangles.

◮ We used EFABCDabcd to express “ABCD and abcd are equal
quadrilaterals.
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Two sample equal-figure axioms

If ABC is equal to abc then BCA is equal to bca. This is
ETpermutation. It is closely related to the principle that the area
of a triangle, defined as half the base times the altitude, doesn’t
depend on which side is considered the base.

If CAD is equal to cad, and DAB is equal to dab, then CAB is
equal to cab. This is ETpaste1.

b b

b

b

b b

b

b

A D

B

C

a d

b

c

There are altogether 18 equal-figure axioms.
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“Lie in the same plane”
◮ Euclid defined parallel lines to be lines that lie in the same

plane and do not meet.
◮ But he failed to define “lie in the same plane”.
◮ Tarski defined “A and B lie on the same side of line L” as

shown below.
◮ This definition works without a dimension axiom and shows

that a point and a line determine two half-planes.

p q

b
a

b b

x p q

b
a

b
b

y
x

c

Figure : (Left) a and b are on the opposite side of pq. (Right) a and b

are on the same side of pq if there exist points x and y collinear with pq,
and a point c, such that B(a, x, c) and B(b, y, c).
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Formalizing Euclid’s proofs

Different ways of writing the same formula are used in English,
TEX, HOL Light, Coq, and our proof debugger. Simple scripts can
translate one to the other.

◮ B is between A and C

◮ B(A,B,C)

◮ BE(A,B,C)

◮ BEABC

◮ A, B, and C are collinear

◮ COABC

◮ several dozen two-letter function symbols are defined,
following Euclid.
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Start of the proof of I.10

NEAB

ANELABC+TRABC proposition:01

ELABC

TRABC

NCABC defn:triangle

ANEEABBC+EEBCCA defn:equilateral

EEBCCA

EEACCB lemma:doublereverse

EEACBC lemma:congruenceflip

EQCB assumption

COACB defn:collinear

COABC lemma:collinearorder

NECB reductio

ANBECBD+EEBDAB postulate:extension

EEBDAB
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Structure of Euclid’s proofs

◮ Each line contains a statement, either a literal or a
conjunction or disjunction of literals.

◮ Proof by reductio and proof by cases are allowed.

◮ Each line is either justified or is an assumption (for reductio or
cases), or is a repeat of a previous line.

◮ initial unjustified lines repeat the hypotheses of the theorem.
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Writing and debugging the proofs

◮ We kept a “master list” of all the theorems in the order that
they need to be proved.

◮ Also we kept lists of all the axioms, postulates, and definitions.

◮ We wrote a custom proof-checker or proof debugger to check
all the proofs in the proper order.

◮ We used Polish notation so formulas can be represented as
strings. Euclid has no function symbols.

◮ Therefore we did not have to write a parser.
◮ Unification is easy to write using regular expressions for

matching, when formulas are strings.
◮ Since we wrote this checker, we could customize the output

when checking failed to provide maximum help in
understanding what failed.

◮ This checker may have bugs. If it does, that does not affect
the validity of our results, because we used it only as a
debugger, to prepare proofs for more reliable checkers.
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Two hundred proofs
◮ Our formalization consists of more than two hundred such

proofs, including proofs of the 48 propositions of Book I.
◮ The proof-debugger runs in a few seconds. Here is the last

part of the output:

Checking rectanglereverse.prf

Proof checked OK. 10 inferences. That makes 227 proofs.

Checking rectanglerotate.prf

Proof checked OK. 5 inferences. That makes 228 proofs.

Checking squaresequal.prf

Proof checked OK. 53 inferences. That makes 229 proofs.

Checking paste5.prf

Proof checked OK. 56 inferences. That makes 230 proofs.

Checking Prop48A.prf

Proof checked OK. 91 inferences. That makes 231 proofs.

Checking Prop48.prf

Proof checked OK. 59 inferences. That makes 232 proofs.
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What are the other 174 proofs?

◮ Book Zero: Preliminaries of a very fundamental nature. For
example, the plane separation theorem.

◮ Propositions that Euclid omitted but were used implicitly.

◮ The theory of angles; equality and order of angles are defined,
not taken as undefined, and their properties have to be
proved. For example, it is hard to prove that an angle cannot
be less than itself.

◮ Advanced theorems that we found necessary to fill Euclid’s
gaps. For example, every square is a parallelogram.

◮ Some convenient variants of Euclid’s propositions.

◮ The proof of Euclid 4 (all right angles are equal).
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Conclusions

◮ We fixed Euclid’s axioms, by adding inner and outer Pasch,
the 5-line axiom, the linear betweenness axioms, line-circle
and circle-circle.

◮ We fixed Euclid’s treatment of equal figures, by making the
equal-figure axioms explicit.

◮ After filling the gaps caused by missing axioms, there are still
serious errors in Euclid.

◮ We were able to fix those by supplying some fundamental
theorems in “Book Zero”, some missing arguments in the
proofs of his propositions, and some theorems Euclid used
implicitly, and should have proved (such as, every square is a
parallelogram).

◮ The result is a clean and completely rigorous treatment of
Euclid Book I, following the lines of Euclid’s original as closely
as is possible, while still fixing the problems of the original.
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