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Euclid, the first formalizer

◮ Museum at Alexandria, 350 BCE

◮ Research institute, university, think tank, DARPA

◮ library, lecture halls, residences

◮ pure math but also weapons research (catapults)

◮ scholars ate in common dining halls, lived on campus, held
property in common.

◮ The library was accidentally
burned, in part, by Julius
Caesar in 48 BCE, but
historian Strabo visited it, in
working order, in 20 BC.

◮ Rome continued to fund it,
especially arms research, but
there is no evidence of the
library after 275.
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Plan of this lecture

◮ History of geometry

◮ History of formal logic (the two have intertwining roots)

◮ Axioms of geometry

◮ Comparison of work of Euclid, Hilbert, and Tarski:
pencil-and-paper formalization

◮ Application of theorem-provers and proof-checkers to these
three in the 21st century
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Euclid’s Elements

◮ Systematic (axioms and proofs) development of some
mathematics.

◮ More advanced mathematics was already known, so maybe
“Elements” meant “elementary”, but not everything in the
Elements is elementary.

◮ Book I is triangles, parallelograms, culminating in the
Pythagorean theorem.

◮ Book II is about “equal figures” (in area)
◮ Greeks did not have algebra except as expressed in geometry.
◮ Book III is about circles.
◮ Book IV is about inscribed and circumscribed polygons.
◮ Book V is Eudoxes’s theory of ratios, forerunner of Dedekind

cuts.
◮ Book VI is about similar triangles
◮ Books VII-X are number theory
◮ Books XI-XII are about geometry in three dimensions,

including the Platonic solids
4 of 66



Was Euclid an editor or an author?

◮ Some of the theorems in Euclid were already old, e.g., Thale’s
theorem (angle inscribed in a semicircle is a right angle) and
the Pythagorean theorem; and Eudoxes’s theory of ratios.

◮ But this is the first known axiomatic development (of any
subject!), so Euclid was at least a systematizer.

◮ In an attempt to organize mathematical knowledge, it may
have become apparent that certain chains of reasoning were
circular, giving rise to the desire to sort out what depended on
what.

◮ I speculate that the Elements began as course notes.
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Euclid’s Postulate 5, “parallel postulate”

If the two angles on the right of pq make less than two right angles
together then line M meets line L.

b
p

b

q
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M
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Criticism of Euclid 5

◮ Already began with Proclus 450 CE

◮ Reached a crescendo in the 19th century

◮ People felt it to be less obvious than the other axioms,
because the intersection point might be arbitrarily far away.

◮ Many famous people gave many incorrect “proofs”.

◮ Eventually it was realized that Euclid 5 is unprovable. There
is such a thing as non-Euclidean geometry.

◮ You can read these stories in Greenberg’s book Euclidean and

Non-Euclidean geometries.
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Increasing rigor

◮ The efforts to prove Euclid 5 led to more careful axiomatic
studies of geometry.

◮ Euclid mentioned “same side” but never defined it.

◮ Euclid never even mentioned anything about the order of
points on a line, but assumed that points were where they
appeared to be in the diagram.

◮ Euclid assumed that circles that appear to intersect, do
intersect.

◮ Pasch (1882) introduced “betweenness”: B(a, b, c) if abc
occur in that order on a line.

◮ Pasch also introduced “Pasch’s axiom”, which we will
examine later.
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Area

◮ Euclid never even mentions the word “area”.

◮ He probably realized he did not know how to define it.

◮ The Greeks apparently did not, in their mathematics,
acknowledge that one measures area with a number, although
of course engineers and architects must have done so.

◮ Even when Archimedes worked out the area of a circle, he
stated his result by saying that a circle is equal to a rectangle
whose height is the radius and whose width is half the
diameter. He didn’t mention area!

◮ Euclid said two figures “are equal” rather than “have equal
area”.
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Archimedes found a rectangle equal to a circle
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Defining arithmetic in geometry

◮ To study similar triangles and proportion,
you need something like multiplication.
But the Greeks never realized that
multiplication of line segments can be
geometrically defined.

◮ Descartes (1637):

◮ Let AB be taken as unity, and let it be
required to multiply BD by BC.

◮ The answer is BE.

B A

C

D

E
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Guiseppe Peano, the father of modern logic 1858-1932

◮ Introduced the logical symbols we use
today

◮ Led a group of mathematicians whose aim
was to write formal proofs of all
mathematics.

◮ Founded a journal in which such papers
were printed.

◮ His famous theorem on existence of solutions of y′ = f(x, y),
when f is continuous, was published in symbols-only form, and
only became known years later when someone “translated” it
into German and published it in a German journal.

◮ Geometry was for him just an example of a theory to
formalize.

◮ Nevertheless he made an important contribution: “inner
Pasch” (which we will examine later)
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Peano and his printing press

Peano had troubles with the
printer and typesetter, so he
bought his own printing press to
print his journal.
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Roots of modern logic in the 19th century

◮ George Boole, 1852, invented Boolean
algebra. Used algebraic symbols and dealt
with propositional logic only.

◮ Pasch, 1882, rigorous treatment of
geometry.

◮ Frege, 1893, Introduced theories of
quantification and classes. His
two-dimensional notation was awkward
and impossible to typeset, so his notation
did not survive. His theory contained a
paradox, pointed out in a famous letter
from Russell. Nevertheless it was
influential.

◮ Peano, contemporary of Frege, but
worked independently.
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Roots of type theory

◮ Russell and Whitehead wrote Principia

Mathematica (PM), working out the
details of type theory.

◮ Several of today’s theorem provers are
based on Higher Order Logic, which is a
direct offshoot of Russell’s type theory.

◮ Russell and Whitehead adopted Peano’s
symbols and Frege’s ideas about
quantification and properties

◮ PM gave a well-worked out example of a
formal system, and struggling with it led
to the notion of first-order logic.
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Roots of first-order logic

◮ First-order logic was largely due to
Thoralf Skolem (1887-1963), who proved
important theorems in the early 1920s.
He published them mostly in Norwegian.

◮ The concepts of syntax and semantics,
theory and model, were not quite clear
before then; indeed the question of
completeness was first posed in writing in
Hilbert-Ackerman 1929.

◮ Soon after it was posed, Gödel answered
it, and then went on to prove his
incompleteness theorems, which still
referred to PM, as what is now known as
PA (Peano arithmetic) was not yet a
standard theory.
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Hilbert’s Foundations of Geometry, 1899

◮ Hilbert was a strong proponent of the
axiomatic method, by which he meant
that for each branch of mathematics, one
should write down some axioms, and
derive all the theorems from those axioms.

◮ Geometry was for him “just an example”,
as it was with Peano.

◮ But he devoted years of effort to geometry. He gave three
academic-year courses interspersed with two summer-school
lecture series, and these lectures were preserved and in recent
years published, so we can see the development of his thought.

◮ His final axiom system, in his 1899 book, is not quite a
first-order theory–first order logic was not yet understood, so
set theory and natural numbers are used freely.
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Tarski’s geometry

◮ first-order theory with 12 to 15 axioms

◮ one-sorted, variables only for points

◮ angles treated as triples of points

◮ lines treated as pairs of points

◮ Developed in the 1920s

◮ Manuscript at the printers destroyed by
bombing

◮ Not published until 1958 and then
without details

◮ Developed at Berkeley in 1960s by Gupta
and Szmielew

◮ Finally published in SST = Szmielew,
Schwäbhauser, Tarski (1983)
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Summary

That completes the historical part of this lecture.
To recap, chronologically:

◮ Euclid 350 BCE

◮ Descartes 1637

◮ Boole 1851

◮ Pasch 1882

◮ Peano 1890

◮ Frege 1893

◮ Hilbert 1899

◮ Russell and Whitehead 1908

◮ Skolem 1920-28

◮ Hilbert-Ackermann 1928

◮ Gödel 1930-31

◮ Tarski 1927–1958
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Euclid’s axiomatic framework

◮ Definitions

◮ Common notions

◮ Axioms (universal statements)

◮ Postulates (constructions asserted to be successful)
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Common Notions

◮ Things which are equal to the same thing are also equal to
each other.

◮ If equals be added to equals, the wholes are equal.

◮ If equals be subtracted from equals, the remainders are equal.

◮ Things which coincide with one another are equal to each
other.

◮ The whole is greater than the part

Adding and subtracting are used for lines, angles, and “figures.”
Equality and “coincidence” refer to congruence. In first-order logic
we need both equality axioms and congruence axioms to provide
the effects of Euclid’s common notions. That still doesn’t cover
the applications to angles and figures.

21 of 66



Euclid’s Five Postulates

◮ To draw a straight line from any point to any point.

◮ To produce [extend] a finite straight line continuously in a
straight line. [How far? Euclid is vague on that point!]

◮ To describe [draw] a circle with any centre and distance
[radius].

◮ That all right angles are equal to one another. (A right angle
is one “set up on a straight line that makes the adjacent
angles equal to one another.”)

◮ That, if a straight line falling on two straight lines make the
interior angles on the same side less than two right angles, the
two straight lines, if produced indefinitely, meet on that side
on which are the angles less than the two right angles.
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Postulates Euclid omitted but ought not to have omitted.

◮ line-circle continuity. A line with one point inside a circle
must meet the circle.

◮ circle-circle continuity. A circle with one point inside and one
point outside another circle must meet that circle.

◮ SAS (side-angle-side implies triangle congruence). Euclid
stated it as Prop. I.2, but even in antiquity his “proof by
superposition” was rejected.

◮ Pasch’s axiom, introduced in 1882: a line that meets one side
of a triangle, and lying in the plane of the triangle, must meet
one of the other two sides of the triangle.

All formalizations of geometry after Pasch used SAS and Pasch,
and either the two continuity axioms mentioned, or yet-stronger
continuity axioms.
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Hilbert’s Foundations of Geometry

◮ Hilbert’s 1899 book, the culmination of a decade of thought
about both axiomatization and geometry.

◮ First-order logic was not yet developed. Hilbert’s theory was
not first-order.

◮ Hilbert had points, lines, and planes as primitive sorts, but
line segments and rays were treated as sets of points.

◮ Angles were defined as pairs of distinct rays with a common
vertex. Pairing seems to be primitive, i.e. not set-theoretically
defined.

◮ Although angles were defined, angle congruence is taken as a
primitive relation!

◮ The notions of “same side” and “opposite side” were taken as
primitive. (Euclid mentioned them but did not define them or
take them as primitive, causing problems with his proofs.)

◮ Hilbert had a complicated “continuity axiom” that was not
first order, but we won’t discuss it here .
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Hilbert’s axioms

◮ Hilbert’s axioms were pretty strong, in the sense that a smaller
set of axioms could work. He wanted to get somewhere fast,
and was not interested in finding a minimum axiom set.

◮ Since points, lines, and planes are all primitive, he needed
“incidence relations” (point lies line, point lies on plane).
“Line lies on plane” can be defined then.

◮ There were “congruence axioms”. One of them was SAS.

◮ Axioms of congruence asserted that congruence of line
segments is an equivalence relation

◮ Axioms of order (on a line), stated in terms of betweenness
B(a, b, c)

◮ Pasch’s axiom, described as a “plane axiom of order.”

25 of 66



Hilbert’s “angle copier” axiom

α L

bQ

b
P

b R
β

◮ Given an angle α and two points PR on a line L and a point
Q not on L, you can find an angle β with vertex at P and R

on one side of angle β, all of whose interior points lie on the
same side of L as Q, such that β = α. Here = means angle
congruence.

◮ Uniqueness of the copy β is specified as part of the axiom.

◮ Hence Euclid’s “part not equal to the whole” for angles is
built-in: an angle cannot be less than itself.
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Hilbert’s axioms, continued

◮ “same side” and “opposite side” defined only for points and
lines in the same plane. For A and B not on L, A and B are
on the opposite side of L if segment AB meets L and on the
same side if AB does not meet L.

◮ Plane separation theorem: Given A and L, every point B in
the plane of A and L is either on the same side of L as A or
the opposite side.
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Archimedes’s axiom

Let a segment a and two points A andB be given on line L. Then
it is possible to define a number of points A1, . . . , An such that B
lies between A and An and each of the segments
A1A2, . . . , An−1An is congruent to a.

◮ This is not a first-order axiom of geometry as it mentions
“natural number” (via the three dots).

◮ So it would be better to not use it, if possible, and Hilbert did
not include it.
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What did Hilbert prove in his book?

◮ Pascal’s theorem implies Euclid’s theory of proportions

◮ Then we can define segment multiplication. (Addition is
trivial.)

◮ Desargues’s theorem implies associativity.

◮ Pascal’s theorem implies commutativity.

◮ (The mentioned theorems are important in “projective
geometry” and were well-known.)

◮ Thus arithmetic can be defined in geometry.

This is an important result, leading to the characterization of the
models of geometry as being of the form F

2 for certain kinds of
fields F. But Hilbert himself didn’t prove such theorems. Instead,
he was eager to get on (in the Appendix) to defining arithmetic
somehow in non-Euclidean geometries.
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Tarski’s geometry

◮ Only one sort: points

◮ Lines are only referred to by two points. That’s what Euclid
does, too. You never see “line L” in Euclid, only AB.

◮ Angles are only referred to by three points, as “angle ABC”.
That’s also what Euclid does.

◮ Angle congruence is a defined concept (unlike Hilbert).

◮ order for angles is also a defined concept, and α 6< α is a
difficult theorem.

◮ This economy of concepts permits an economy of axioms:
Tarski started with 16 axioms and (decades later) had only 11,
since the rest had been proved from the 11 by Tarski’s
students.

◮ And the axioms all have short statements without using
definitions or abbreviations.
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Betweenness

If B is between A and C, then do we allow B = A or B = C, or is
B required to be different from A and C?

◮ If B has to be different from A and C, that is strict
betweenness

◮ Otherwise it is non-strict betweenness.

◮ Hilbert has strict betweenness

◮ Tarski has non-strict betweenness

◮ Either one can define the other one

◮ but it makes the axioms not directly comparable, a formal
annoyance.

◮ In constructive geometry, I used strict betweenness,
reformulating Tarski’s axioms accordingly.
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Tarski’s 5-segment axiom

This is how one expresses the SAS congruence principle in Tarski’s
system.

d

a b c

D

A B C

If the four solid lines on the left are equal to the corresponding
solid lines on the right, then the dashed lines are also equal.

This is SAS for dbc = DBC, interpreting the congruence of
triangles abd and ABD as expressing the congruence of angles dbc
and DBC.
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History of the 5-segment axiom

◮ The key idea (replacing reasoning about angles by reasoning
about congruence of segments) was introduced (in 1904) by
J. Mollerup.

◮ His system has an axiom closely related to the 5-line axiom,
and easily proved equivalent. Tarski’s version, however, is
slightly simpler in formulation.

◮ Mollerup (without comment) gives a reference to Veronese
(1891) Veronese does have a theorem (on page 241) with the
same diagram as the 5-line axiom, and closely related, but he
does not suggest an axiom related to this diagram.

◮ Hence Mollerup gets the credit.
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Dimension axioms

◮ Euclid’s Books I-III are about plane geometry, but it is meant
to be “any plane”.

◮ Euclid has no axiom saying that every point lies in a plane,
and he can’t have meant to assume that, since in later books
he deals with three-dimensional space and the Platonic solids.

◮ Hilbert’s theory is about three-space. He has an axiom that
there are four points not lying on any plane, for example.
That is a “lower dimension axiom”.

◮ Hilbert has an upper dimension axiom too: if two planes have
a point in common then they have another point in common.

◮ Tarski states a lower and upper dimension axiom for each n,
but wishes to develop as much as possible dimension-free.
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Pasch’s axiom in Tarski’s theory

◮ Pasch’s version of Pasch’s axiom, that a line that meets one
side of triangle ABC must meet another side, doesn’t work in
3-space without requiring explicitly that the line lie in the
plane of ABC.

◮ This defect was remedied by Peano in 1890, who invented the
axioms now known as inner Pasch and outer Pasch.

b

a x
b q

bc

b b

bp

b

b
b

p
x

bq

b a

bc

Inner Pasch (left) and outer Pasch (right). Line pb meets triangle
acq in one side ac, and meets an extension of side cq. Then it also
meets the third side aq. The open circles show the points asserted
to exist.
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Relations between inner and outer Pasch

◮ In formalizing Euclid, I needed both, so I took both as axioms.

◮ Tarski originally took both. But Gupta’s thesis (1965) showed
that either one implies the other one.

◮ So the choice was an aesthetic one.

◮ Tarski preferred outer Pasch, but Szmielew chose inner Pasch
and that was used in SST.

◮ The proofs of the two implications are both difficult, but
perhaps inner implies outer is a bit more difficult.
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Degeneracies in inner and outer Pasch

◮ with non-strict betweenness, these axioms include degenerate
cases, even when all the points collapse to lie on a single line.

◮ That was fine with Tarski; these degenerate cases enabled his
students to prove some betweenness axioms that were
originally thought to be needed.

◮ If you want the minimal axiom system and do not care about
the axioms expressing geometrical intuitions, that’s fine.

◮ On the other hand, if you do care about the axioms expressing
intuitions, and not so much about whether you have 12 or 16
axioms, use strict betweenness and put back the original
betweenness axioms.

◮ You have to do that if you want to do constructive geometry.

37 of 66



Extension axiom

◮ Euclid said a line can be “produced”, but didn’t say how far.

◮ Hilbert said, if AB is any line, and P any point, then there is
a point Q on a given ray with vertex Q such that PQ = AB

[Axiom III,1, misleadingly translated in the Open Court
edition].

◮ Tarski’s version is the same as Hilbert’s: segment RP can be
extended past P by amount AB.

◮ Since Tarski uses non-strict betweenness, the cases Q = P

and A = B are both allowed. The axiom with strict
betweenness seems better to express the intuition involved.
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Rigid and collapsible compass, and Euclid I.2

◮ A rigid compass allows you to set the compass to AB, then
pick it up and transfer the distance to point P , constructing
the extension of RP as postulated by Hilbert and Tarski.

◮ A collapsible compass does not allow you to do that. You can
only draw a circle with center P and passing through an
existing point X.

◮ Euclid’s compass was collapsible, as given by his
circle-construction postulate. And his segment-extension
postulate doesn’t specify how far you can extend RP .

◮ Thus Euclid needs to prove Hilbert and Tarski’s extension
axiom, which he does in Prop. I.2.

◮ That is, “a collapsible compass can simulate a rigid compass.”

◮ I.2 is a beautiful proof, and it is a shame to make it a
one-liner by choosing an axiom that includes it.
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Line-circle continuity

There are several possible versions of an axiom of that name.

◮ A point P is inside circle C with center A if there is a point B
on C and a point Q between A and B with AP = AQ.

◮ P is outside circle C with center A if there is a point B on C

and a point Q with B(A,B,Q) and AP = AQ.

◮ Segment-circle continuity: If P is inside circle C and Q is
outside, then PQ meets circle C.

◮ Line-circle continuity: if P is inside circle C then any line L

through P meets C.

◮ Or we could require L to meet C twice, with P between the
two points where L meets C.

◮ The proofs of equivalence of these axioms are not quite trivial.
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Circle-circle continuity

b
c

b
a

bz
bb

b
x

b q b d

bp

KC

◮ If circle K has a point p inside circle C and a point q outside
K, then C meets K.

◮ Or maybe, C meets K twice.

◮ Once is enough for Euclid I.1 and I.22, and twice doesn’t help
with improving the proof of I.1.

◮ Axiomatically it doesn’t matter, because:

◮ line-circle implies circle-circle and vice versa, but the proofs
are difficult.
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Tarski’s continuity axiom

◮ Tarski’s continuity axiom (A11) is a schema. It says that if a
Dedekind cut is defined by a first-order formula, it is filled.

◮ I used to think A11 easily implied line-circle and
circle-circle–until I tried to prove it.

◮ The reason it is difficult will be discussed soon
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Gupta’s amazing 1965 Ph. D. thesis

H. N. Gupta’s thesis, written under Tarski at UC Berkeley (1965)
contained these results, all proved without using any continuity
axioms, including line-circle and circle-circle and A11.

◮ Inner Pasch implies outer Pasch.

◮ Outer Pasch implies inner Pasch.

◮ The base of every isosceles triangle has a midpoint.

◮ Every segment has a midpoint.

◮ Dropped perpendiculars exist, i.e. there is a perpendicular to
line L from point P not on L.

◮ Erected perpendiculars exist, i.e. there is a perpendicular to
line L at a point P on L.

◮ Other difficult results about betweenness axioms.

The constructions and long chains of reasoning in these proofs are
beautiful and amazing. Imagine: construct perpendiculars without
using any circles!
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What was done with and in Tarski’s theory

◮ Up until 1965, Tarski’s students worked on reducing the
number of axioms.

◮ Szmielew and possibly Tarski worked out proofs of many
theorems, using Gupta’s results to provide perpendiculars and
midpoints.

◮ They followed Hilbert, struggling to prove Pappus’s and
Desargues’s theorems and define addition and multiplication.

◮ They succeeded in these efforts; as a consequence, they
proved all of Hilbert’s axioms from Tarski’s.

◮ These results were in Szmielew’s manuscript about 1965, but
not published until 1983 in SST: Szmielew, Schwäbhauser,
and Tarski.

◮ Part I of SST is due to Szmielew “with inessential
modification”, and is the only place where Gupta’s work was
ever published.

◮ But they never went back to prove Euclid’s theorems!
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To prove A11 or segment-circle implies line-circle

◮ Given line L with a point P inside circle C. To prove L meets
C, either by A11 or circle-segment, we will need a point Q on
L outside C.

◮ Obvious ways to construct Q need dropped perpendiculars
and the theorem that the hypotenuse of a right triangle is
greater than the side.

◮ But to get dropped perpendiculars without using line-circle,
we need Gupta’s very difficult results.

◮ Well, it works, but it is not trivial if it relies on Gupta.

◮ I acknowledge Richter for pointing this out.
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What was Euclid thinking?

◮ It seems strange that Euclid, who was generally careful,
glaringly omits both line-circle and circle-circle.

◮ When he needs to use line-circle in the proof of I.2, he instead
says “Let the straight line AE be produced in a straight line
with DA”. In other words, “let DA be extended until it
meets the circle at E.”

◮ Lines are always finite, so line-circle intuitively says that a line
can be extended until it meets the circle, as well as saying that
(when it is long enough to reach the circle) it cannot pass
through the circle at some “missing point” without touching.

◮ Probably Euclid thought the difficulty was getting the lines
long enough, not getting the circle impenetrable.

◮ Then he probably had line-circle in mind when stating Euclid
2, “To produce a finite straight line continuously in a straight
line”, not just “by some amount”, and not “by an amount
equal to a given segment”, but “enough to meet a given
circle”, if the starting point is inside that circle.
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Betweenness axioms

◮ Here are the betweenness axioms we used in formalizing
Euclid.

◮ It makes a big difference whether B is strict or non-strict
betweenness, and whether inner Pasch (or outer Pasch) is
taken with strict or non-strict betweenness.

◮ We state the axioms using strict betweenness

identity ¬B(a, b, a)

symmetry B(a, b, c) → B(c, b, a)

inner transitivity B(a, b, d) ∧B(b, c, d) → B(a, b, c)

connectivity B(a, b, d) ∧B(a, c, d) ∧
¬B(a, b, c) ∧ ¬B(a, b, c) → b = c
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Same side and opposite side according to Tarski

◮ Tarski gave definitions of “same side” and “opposite side”
that work even without a dimension axiom.

◮ These definitions can be used to define plane. The plane
determined by a line L and point P consists of all the points
that are on L, or on the opposite side of L from P , or on the
same side of L as P .

p q

b

a

b b

x
p q

b

a

b

b

y

x

c

(Left) a and b are on the opposite side of pq. (Right) a and b are
on the same side of pq if there exist points x and y collinear with
pq, and a point c, such that B(a, x, c) and B(b, y, c).
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What about Euclid’s Postulate 4?

Euclid’s Postulate 4 says “all right angles are equal.”

◮ There is a long history of claims that Postulate 4 is provable.

◮ It matters a lot what the other axioms are.
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History of “proofs” of Postulate 4

◮ Proclus §189 offers a proof, using angle-copying and
trichotomy for angles, and “the whole is greater than the
part” for angles, and assumes everything is in one plane.

◮ Proclus’s proof works using Hilbert’s axioms, see Prop. 3.23
of Greenberg’s text, 4th edition.

◮ Proclus taught in Athens, and died in 485. Thus Euclid’s
Elements were already 700 years old.
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Proving Postulate 4 from Tarski’s axioms

◮ done in SST, much harder than in Hilbert.

◮ One proves that congruence is preserved under point
reflections and reflections in a line and translations and
rotations.

◮ That reduces it to the case where the two right angles have
the same vertex, and one side in common.

◮ but they could still be in different planes, so we are far from
done.
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Different versions of the parallel postulate

There are many propositions equivalent to the parallel postulate
(in “neutral geometry”, i.e. without any parallel postulate). Here
are a few:

◮ Euclid’s Postulate 5

◮ Playfair’s postulate

◮ Triangle circumscription

◮ Tarski’s version

◮ There are at least 34 propositions equivalent to the parallel
postulate

I will show you pictures of the ones named here.
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Euclid 5

Here is a points-only version. (It doesn’t mention angles.) The
hypothesis is that the gray triangles are congruent and B(q, a, r).
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M
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Playfair’s postulate

b
p

L

K

M

◮ There can’t be two parallel lines to L through p.

◮ No existential assertion at all.

◮ This is the version Hilbert used.
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Triangle circumscription

L

K

b
e

bc

ba
b
p

bb

M

b x

◮ Any three non-collinear points lie on a circle.
◮ Equivalently, for any three non-collinear points, there exists a

fourth point equidistant from all three (the center).
◮ Euclid IV.5 proves the triangle circumscription principle.
◮ The converse implication was first proved by Farkas Bolyai,

father of Janos Bolyai, who thought he had proved Euclid’s
parallel postulate, but had actually assumed the triangle
circumscription principle. See Greenberg, pp. 229–30, p. 240.
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Tarski’s parallel axiom

x y

b
a

bb

bc

b
t

b
d

◮ If t is in the interior of angle abc then any line through t

meets the sides of the angle.

◮ Mentioning point d allows avoiding mention of angles.
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1950s

◮ Early computers had just come into existence.

◮ Already people began trying to make them prove theorems.

◮ They started with propositional logic and geometry.

◮ Gelernter’s Geometry Machine 1959 ran on the IBM 704

◮ It had 20,000 instructions in a special-purpose list-processing
language which was then compiled into FORTRAN.

◮ It found solutions to fifty problems taken from high-school
textbooks and final examinations.

◮ running times up to 30 minutes.
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Computational analytic geometry

◮ Analytic geometry: write everything in (x, y) coordinates and
use algebra.

◮ You can use a computer to do the calculations and thus prove
geometry theorems.

◮ The algebra can be tricky. Several methods were used:

◮ Wu’s method

◮ Chou’s method

◮ The area method

◮ Gröbner bases

◮ Only works for theorems that translate as equations (not
inequalities)

◮ None of these qualifies as “formalization” because (unverified)
computation is used

◮ The list of people and papers involved would be several slides
long; for history see my ADG 2012 paper.
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Tarski’s system in OTTER

◮ Art Quaife’s 1990 book had a chapter on Peano Arithmetic
and a chapter on Tarski’s geometry.

◮ Wos’s early work with Tarski geometry (1988 and 2003)

◮ Qaife and Wos left some unsolved “challenge problems.”

◮ Wos and Beeson returned to these problems in 2010

◮ We proved every theorem in 12 chapters of SST, one at a
time, giving the prover the previous theorems to work from.

◮ Over 200 theorems altogether.

◮ We used various “strategies” to help OTTER find the proof.

◮ Sometimes it was more like a proof-checker than a prover.

◮ But we solved all the “challenge problems” left unsolved by
Quaife and Wos.
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Hilbert in HOL Light

◮ Richter formalized Hilbert in HOL Light

◮ His work is distributed with HOL Light as
RichterHilbertAxiomGeometry

◮ two-dimensional only

◮ Proved theorems in absolute geometry including most of
Euclid I.13 to I.28
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The Coq group at Strasbourg

◮ Julien Narboux at Strasbourg, France started this project in
2012.

◮ Gabriel Braun, Pascal Schreck, and by 2014, Pierre Boutry
were involved.

◮ Coq can be used to define algorithms that are then
automatically proved correct.

◮ They formalized Wu’s method and the area method

◮ Then they started to formalize Tarski geometry, getting
several chapters into SST.
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ADG 2012
The dragon, as in maps of old, represents uncharted and possibly
dangerous territory.

Here be dragons

Geometric Proof Algebraic “Proof”

Geometric Theorem Algebraic Translation

Gröbner bases

CAD (Collins)

Chou’s area method

Wu-Ritt method

Narboux
Szmielew
Tarski
Euclid

Chou, Wu, Descartes

Descartes, Hilbert

I proposed at ADG 2012 to go around the diagram from upper left
clockwise to the lower left.
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The Coq group at Strasbourg did it!

◮ They formalized the definition of multiplication in Tarski’s
theory.

◮ Then they could adapt their earlier work on analytic geometry
to get first-order proofs in Tarski’s theory

◮ They answered a challenge in my ADG paper: construct an
equilateral triangle with given base, without using circles.
(The construction is Hilbert’s.)
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Formalizing Euclid

◮ Hilbert and Tarski took a different path than Euclid

◮ They did not use circles, and instead focusedon segment
arithmetic

◮ Euclid needs some corrections!

◮ Euclid Book I formalized in 2012 by Beeson, Wiedijk, and
Narboux

◮ proofs written in a fragment of first-order logic

◮ checked first with a custom proof-checker or “proof debugger”

◮ Translated into HOL Light and Coq and checked in both
checkers.
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Summary

◮ Formal geometry has roots in Euclid.

◮ Efforts to improve the rigor of Euclid have been ongoing for
2370 years.

◮ In the nineteenth century that was part of a larger struggle to
improve rigor in mathematics.

◮ Computers were applied to proving theorems from the outset,
and geometry was always of interest.

◮ The old split between analytic and synthetic cropped up again
in computer geometry

◮ Now Tarski and Hilbert, and Euclid Book I, have all been
computer-verified.
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Reading list

◮ Euclid’s Elements. Get the Green Lion Press edition, all
thirteen books in one volume.

◮ Greenberg, Euclidean and non-Euclidean geometries, 4th
edition

◮ Schwabhäuser, Szmielew, and Tarski. (German; I can give you
a free copy.)

◮ Proof-checking Euclid, by Beeson, Narboux, and Wiedijk.
Annals of Mathematics and Artificial Intelligence, 85(2):
213-257. January 2019.

◮ A. Tarski and S. Givant, Tarskis system of geometry, The
Bulletin of Symbolic Logic, 5 (1999), pp. 175214.

◮ Hilbert, Foundations of Geometry.
◮ Finding Proofs in Tarskian Geometry. Beeson, M.; and Wos,

L. Journal of Automated Reasoning, 58(1): 181-207. 2017.
◮ All my papers are listed at

http://www.michaelbeeson.com/research/papers/pubs.html.
If you’re reading this online you may be able to click on that
URL successfully.
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