ASSIGNMENT 8: COMPUTATIONS BY TURING MACHINES

MICHAEL BEESON

1. Recall that in a previous assignment you wrote a Turing machine to compute successor
in binary notation. Using the simulator, find a string representation of its computation on
input 111011. That is, prepare a rectangular array in which each row shows the tape, with
a vertical line marking the left of the input, and to the left of that line, column 0 shows the
current state. Indicate the head position in each row somehow, e.g. by red highlighting,
or a carat over the scanned square, or something.

2. Now move towards the official version of computation, as follows. According to the
official definition, each tape square is a 16-bit integer. Ascii code of 0 is 48, ascii code of 1
is 49. Write out the list of six integers corresponding to the six tape squares on the first
row of the computation; use ordinary decimal notation for the integers, separating them
by commas. Don’t forget the head-present flag. To the beginning of that string, add a 0
for the start state, and a comma.

3. That sequence of 7 integers has to be coded as a single integer to make an ITD.

(a) Using the method of coding sequences using powers of primes given in Lecture 4 to
encode this sequence, write an expression involving powers of primes that represents the
encoded sequence. (Do not attempt to evaluate that expression.)

(b) Observe that if it were evaluated, and you had to decode the sequence, you would
have to start by factoring that large number. Factoring is famously difficult, but in this
case (and generally for decoding sequences) it wouldn’t be so bad. Why not?

4. Let ¢, be the partial function computed by Turing machine e. Use the T-predicate
and the U-function to express ¢.(z) = 1 without using ¢ and without English.

5. The “number of steps” taken in a Turing machine computation is the number of
machine instructions executed. Define f(e) to be the number of steps taken by Turing
machine e in computing ¢.(0) (if that is defined). Use the T-predicate to show that f is
a Turing computable function.

6. Turing machines have “unbounded memory” in the form of a (potentially) infinite
tape. This exercise considers what happens if we restrict the machine to use only a limited
amount of the tape, say ten times the length of the input string. When a move-right
instruction would cause that bound to be violated, the machine halts; otherwise it works
like a Turing machine. Let %, be the function computed by Turing machine e with this
modification. Show that the halting problem for such computations is solvable. More
precisely, show that the set of e such that 1.(e) halts is Turing computable (it is not

1



2 MICHAEL BEESON

claimed that it is computable by such a restricted machine, but by an ordinary one). Hint:
Show that, given the machine e and the input x, there are only finitely many possible
ITD’s. How many? What happens if an earlier ITD is repeated?



