
Lecture 11

Peano Arithmetic and

Primitive Recursion

Michael Beeson



Primitive recursive functions are representable

◮ This theorem is more difficult than it may appear.

◮ The main point of confusion for students is the appearance
that the proof is more complicated than necessary.

◮ The difficulties have to do with the coding of sequences.



What has to be proved

We review the definition of representability. We need to construct,
for each primitive recursive f , a formula A(x,m) such that

(i) for all x, ⊢ A(x̄, ȳ) if y = f(x), and

(ii) for all x, ⊢ ∃!y A(x̄, y).



An obvious approach that does not work

◮ We know that the graph of each primitive recursive function is
definable by a bounded arithmetic formula.

◮ We know that predicates defined by bounded arithmetic
formulas are representable.

◮ Therefore the graph of each primitive recursive function is
representable.

◮ That gives us the formula A we need such that
(i) for all x, ⊢ A(x̄, ȳ) if y = f(x).

◮ But it does not show:
(ii) for all x, ⊢ ∃!y A(x̄, y).

◮ Showing f is representable is harder than showing its graph is
representable.



The correct approach

We proceed by induction on primitive recursive functions.

◮ We must show that the initial primitive recursive functions
(constants and projection functions) are representable.

◮ Then we must show that if G and F1, . . . , Fk are primitive
recursive, then the generalized composition
G(F1(x), . . . , Fk(x)) is representable.

◮ Finally we must show that if F is defined by primitive
recursion from G and H, and G and H are representable,
then so is F .

◮ The first two tasks are straightforward, and are left as
exercises.

◮ But the third is surprisingly difficult.



The difficult case

Suppose that f is defined by primitive recursion:

f(x, 0) = g(x)

f(x, n′) = h(x, n, f(x, n)).

The key observation is this, first expressed informally:

f(x, n) = y ↔ ∃v0, . . . , vn(v0 = g(x)

∧∀i < n(vi+1 = h(x, n, vi)) ∧ y = vn)

This formulation makes it clear that what we need is a way to code
sequences of numbers as integers. We have already discussed two
solutions of this problem, but what we need here is a representable

way of coding sequences as integers.



Powers-of-primes sequence coding doesn’t work here

Suppose we try to do this using the encoding by powers of primes,
where for example the sequence 2, 5, 3 is encoded as
22+1 · 35+1 · 53+1. Recall that (v)i is the power of prime pi in c,
less 1 if that power is positive. Then (v)i is the i-th member of the
sequence coded by v. It seems that we are on the right track:

f(x, n) = y ↔ ∃v((v)0 = g(x)

∧∀i < n((v)i+1 = h(x, n, (v)i)) ∧ y = vn)

But for this formula to represent f , we would have to show that
the function g(v, i) = (v)i is representable. How can we do that?
It seems to be as difficult as the general problem of showing any
primitive recursive function is representable.



The Chinese Remainder Theorem

◮ Gödel found the solution using the Chinese remainder
theorem!

◮ That is a theorem of elementary number theory, which I am
assuming you do not know. Therefore we will learn it today.

◮ The Chinese remainder theorem says that given any set of
relatively prime numbers m1, . . . ,mn, and and numbers
c1, . . . cn, we can simultaneously solve the n congruences
x ≡ ci mod mi.

◮ For example, given 5, 3, 9 as the ci and 2, 5, 17 as the
relatively prime numbers, the Chinese remainder theorem says
we can find an x such that x ≡ 5 mod 2, x ≡ 3 mod 5, and
x ≡ 9 mod 17.

◮ x = 43 works in this example.
◮ That leaves us with two tasks: prove the Chinese Remainder

Theorem, and show how Gödel used it.
◮ We’ll go first to its use; the proof of the Chinese Remainder

Theorem is given on the last slide of this lecture.



How not to use the Chinese Remainder Theorem

◮ It won’t do just to take the mi to be the first n primes, and
code (c1, . . . , cn) as the solution x of the congruences x ≡ ci

mod mi.

◮ Then the decoding function (v)i would be v mod pi.

◮ But how can we prove that is representable, without first
proving that the n-th prime function pi is representable?

◮ We are back to square one.

◮ The Chinese remainder theorem itself is not quite the entire

trick to this proof.



The β function

To get over this difficulty, we need to define the numbers mi to
use in the Chinese remainder theorem by a formula.

◮ Gödel defined the mi, which he called δ(d, i), by

δ(d, i) := 1 + (i + 1)d

◮ He also defined

β(c, d, i) = c mod δ(d, i)

◮ The sequence a0, . . . , an is to be coded by the two integers c
and d such that

β(c, d, i) = ai for i = 0, 1, . . . , n

◮ We hope every sequence a0, . . . , an is encoded by some (c, d).

◮ The Chinese remainder theorem implies that, provided the
numbers δ(d, i) are relatively prime, for i = 0, . . . , n.



Two things left to prove

◮ Given a0, . . . , an, we can choose d so that the δ(d, i) are
relatively prime for i = 0, . . . , n.

◮ β is representable



Choosing d so the δ(d, i) are relatively prime

◮ Following Kleene, page 241:

◮ Let s be the greatest of n, a0, . . . , an, and take d = s!.

◮ Let di = δ(d, i) for i = 0, 1, . . . , n.

◮ Suppose dj and dj+k have a factor in common. Then let p be
a prime dividing both of them. Then p divides the difference

dj+k − dj = (1 + (j + k + 1)s!) − (1 + (j + 1)s!) = ks!

◮ But p cannot divide s! since it divides 1 + (j + 1)s!.

◮ Also p cannot divide k, since k ≤ n ≤ s and every number
less than s divides s!; then if p divides k also p divides s!,
which it does not.

◮ But p is prime and divides ks!, so it must divide either k or s!,
contradiction.

◮ That proves that the di are indeed relatively prime.



Goal: to show β is representable

◮ This is proved at the end of § 41 of Kleene, where it may
seem a bit mysterious, coming long before it is motivated.

◮ Recall

β(c, d, i) = c mod δ(d, i)

= rm(c, (i′ · d)′)

◮ So we have to begin by showing rm(x, y), the remainder of x
on division by y, i.e. x mod y, is representable.

◮ That in turn requires the use of some simpler things, such as
x < y and cutoff division.

◮ We can’t just quote the theorem we’re trying to prove, namely
that every primitive recursive function is representable.



x < y is representable

◮ z < y is an abbreviation for ∃v (v′ + z = y).

◮ It would also work to define it as ∃v (z + v′ = y), but we
follow Kleene.

◮ We will show that this formula represents x < y.

◮ Later at home, compare our proof to Kleene, p. 196,
Example 2.



x < y is representable, first part

◮ Suppose a < b. We must show two things, the first of which is

⊢ ∃c(c′ + ā = b̄).

◮ It will suffice to show ⊢ (k̄′ + ā = b̄) for some k, as the
formula with ∃ can be derived from the one with k̄ by the
inference rule known as “∃-introduction.”

◮ The obvious k is k = b − a − 1, which is a natural number
since a < b.

◮ Now the value of the term k̄′ is k + 1, which is b − a; so the
value of the term k̄′ + ā is b, which is also the value of b̄.

◮ Hence the provability of (k̄′ + ā = b̄) is a special case of the
fact that terms are provably equal to the numerals for their
value, which we proved in the last lecture.



x < y is representable, second part

◮ We have to show that if not a < b (which is the same as
a ≥ b)

⊢ ¬∃c(c′ + ā = b̄).

◮ Suffices to show
⊢ c′ + ā 6= b̄.

◮ Note c is a variable, not a numeral.

◮ We will proceed (on the next slide) by (informal) induction on
a.

◮ We will only use induction informally, we will not use the
induction axioms of PA.

◮ That doesn’t matter now, but several weeks from now, it will
matter, so we will just take care of it, by paying attention to
not using formal induction.

◮ It’s also good to pay attention to the difference between using
induction informally (at the meta-level) and using it formally
(in PA).



PA ⊢ c′ + ā 6= b̄ for b ≤ a

◮ We prove by informal induction on a that for all b ≤ a

⊢ c′ + ā 6= b̄.

◮ Note that c is a free variable, not a numeral.
◮ Base case: The only b ≤ 0 is b = 0. So we have to prove

c′ + 0 6= 0. But c′ + 0 = c′ and c′ 6= 0, done.
◮ Induction step: Suppose ⊢ c′ + ā 6= m̄ for all m ≤ a. We have

to prove ⊢ c′ + ā′ 6= k̄ for all k ≤ a + 1.
◮ If k 6= 0 then k = m + 1 for some m ≤ a so (provably)

c′ + ā 6= m̄ and hence c′ + ā′ = (c′ + ā)′ 6= m̄′, since if we did
have equality then we would have ⊢ c′ + ā 6= m by the axiom
that successor is one to one, but that is contrary to the
induction hypothesis.

◮ if k = 0 then we have to prove ⊢ c′ + ā′ 6= 0.
◮ But ⊢ c′ + ā′ = (c′ + ā)′ 6= 0 since 0 is not a successor of

anything.
◮ Done! Notice we did not use any formal induction (within

PA); we only used the non-induction axioms of PA.



Cutoff division is representable, first part
By x/y we mean ⌊x/y⌋, i.e. truncated integer division, but we
specify x/0 = 0.

◮ We will show it is represented by the formula
∃v, z (v ≤ x ∧ x = y · v + z ∧ z < y ∨ y = 0 ∧ z = x ∧ v = 0).

◮ We have to show

⊢ ∃v, z (v ≤ x̄∧ x̄ = ȳ · v + z∧ z < ȳ∨ ȳ = 0∧ z = x̄∧ v = 0).

◮ If y = 0, take z = x and v = 0. Then
⊢ ȳ = 0 ∧ z̄ = x ∧ v̄ = 0. Done!

◮ If y > 0, let v = x/y and z = x mod y. It suffices to show

⊢ x̄ = ȳ · v̄ + z̄ ∧ z̄ < ȳ ∧ v̄ ≤ x̄.

◮ We have ⊢ z̄ < ȳ since < is representable and z < y.
Similarly ⊢ v̄ ≤ x̄. So it suffices to show ⊢ x̄ = ȳ · v̄ + z̄.
That follows because the terms on both sides have the same
value, namely x, and we showed last time that each closed
term is provably equal to its value.



Cutoff division is representable, second part

Note, Kleene states this p. 202 but doesn’t actually prove it! We
have to show

⊢ ∃!v (∃z (v ≤ x∧ x̄ = ȳ · v + z ∧ z < ȳ)∨ ȳ = 0∧ z = x̄∧ v = 0).

◮ The case y = 0 is easy (that’s why we needed to specify
v = 0)

◮ When y > 0: As before let v = x/y and z = x mod y; we
already showed ⊢ x̄ = ȳ · v̄ + z̄ ∧ z̄ < ȳ ∧ v̄ ≤ x̄, so now it
suffices to show

⊢ (∃z (u ≤ x̄ ∧ x̄ = ȳ · u + z ∧ z < ȳ)) ⊃ u = v̄.

◮ For that it suffices to show

⊢ u ≤ x̄ ∧ x̄ = ȳ · u + z ∧ z < ȳ ⊃ u = v̄.



Cutoff division continued

We have to prove

⊢ u ≤ x̄ ∧ x̄ = ȳ · u + z ∧ z < ȳ ⊃ u = v̄.

Here again the key is that u ≤ x̄ is provably equivalent to a
disjunction

u = 0 ∨ . . . ∨ u = x̄

and z < ȳ is provably equivalent to a disjunction

z = 0 ∨ . . . ∨ u = y − 1.

Thus the antecedent of what we have to show provable is provably
equivalent to a disjunction of all the cases of putting a particular
numeral j̄ in for u and a particular numeral ℓ̄ in for z. So it suffices
to prove for each j ≤ x and ℓ < y that (with z = x mod y and
v = x/y)

⊢ x̄ = ȳ · j̄ + ℓ̄ ⊃ j̄ = v̄



Cutoff division, continued

We are trying to show that for each j ≤ x and ℓ < y that (with
z = x mod y and v = x/y)

⊢ x̄ = ȳ · j̄ + ℓ̄ ⊃ j̄ = v̄

Now if j = v, we have ⊢ j̄ = v̄, since j̄ and v̄ are identical. And if
j 6= v, the antecedent is refutable, i.e.

⊢ x̄ 6= ȳ · j̄ + z̄

since the two sides are terms with unequal values. The reason why
the values are unequal is that the true quotient v and remainder z
are the only solution (j, ℓ) = (v, z) of the equation, given the
constraints ℓ < y and j < x.



Remainder is representable, first part

◮ We are following Kleene, p. 203, more or less.

◮ Define R(x, y, z) to be
∃w, u, v (u + w = x ∧ x = y · w + z ∧ v′ + z = y).

◮ With z < y an abbreviation for ∃v (v′ + z = y), we have
R(x, y, z) equivalent to ∃w (w ≤ x ∧ x = y · w + z ∧ z < y),
as shown Kleene p. 203.

◮ Suppose z = x mod y. We have to show ⊢ R(x̄, ȳ, z̄).

◮ Since z < y we have ⊢ z̄ < ȳ as shown previously.

◮ Suffices to show ⊢ x̄ = ȳ · w̄ + z̄ for w = ⌊x/y⌋.

◮ that follows from the fact that closed terms are provably equal
to their values, since the value of the term on the right is x,
because x = y · w + z.



Remainder is representable, second part

◮ We have to show that for each x, y,

⊢ ∃!z∃w(w ≤ x̄ ∧ x̄ = ȳ · w + z ∧ z < ȳ)

◮ In view of the last slide, it suffices to show that with
z = x mod y,

⊢ (∃v (v ≤ x̄ ∧ x̄ = ȳ · v + z̄ ∧ u < ȳ)) ⊃ u = z̄.

◮ Since the ∃ is in the antecedent of an implication, it suffices
to show

⊢ (v ≤ x̄ ∧ x̄ = ȳ · v + u ∧ u < ȳ) ⊃ u = z̄.

◮ Here we use again the fact that

⊢ u < ȳ ≡ u = 0 ∨ u = 1̄ . . . ∨ u = y − 1.



Remainder is representable, continued

◮ Recall we’re trying to prove, with z = x mod y, that

⊢ (v ≤ x̄ ∧ x̄ = ȳ · v + u ∧ u < ȳ) ⊃ u = z̄.

◮ It suffices to prove

⊢ (x̄ = ȳ · v + u ∧ (u = 0 ∨ . . . ∨ u = y − 1)

∧(v = 0 ∨ . . . ∨ v = x̄)) ⊃ u = z̄.

◮ It suffices to prove that for each j = 0, 1, . . . y − 1 and each
v ≤ x, we have

⊢ x̄ = ȳ · v̄ + j̄ ⊃ j̄ = z̄.

◮ if j = z that is clear.
◮ if j 6= z it suffices to show

⊢ x̄ 6= ȳ · v̄ + j̄

But that follows, because the two sides are terms with
unequal values (since j 6= z = x mod y).



β is representable

Recall

β(c, d, i) = c mod δ(d, i)

= rm(c, (i′ · d)′)

So β is a composition of representable functions, and therefore
representable. But since we left that lemma as an exercise, let us
be a bit more explicit:

◮ To prove β is representable, we need a formula B(c, d, i, w)
such that

(i) if w = β(c, d, i) then ⊢ B(c̄, d̄, ī, w̄), and

(ii) ⊢ ∃!w (B(c̄, ,̄̄i, w))

◮ We take B(c, d, i, w) to be R(c, (i′ · d)′, w) where R
represents rm(x, y).

◮ We do not check every detail; see Kleene p. 204 if you want
to see them.



Comparison to Kleene

◮ In Kleene, the proof that every primitive recursive function is
representable is preceded by the somewhat easier proof that it
is definable by a bounded arithmetic predicate (Kleene does
not state “bounded”, but the proof proves it).

◮ We have already derived that theorem another way, by
showing that every primitive recursive function is Turing
computable, and hence given by a normal form using the
T-predicate, and the T-predicate is definable by a bounded
arithmetical formula.

◮ For that we used another coding of sequences, a supposedly
more “modern” one using bits and binary expansions.

◮ But if we were to try to use this approach to prove that every
primitive recursive function is representable, we would still run
into the same difficulty, of needing to encode a quantifier over
sequences as a single quantifier over numbers in a
representable way.

◮ Conclusion: the β function still needs to be separately proved
representable.



Every primitive recursive function and relation is

representable in PA

That just restates the theorem that we started out to prove, and
finally succeeded to prove.



Every primitive recursive function and relation is definable

in PA

◮ We proved this already, by showing that the primitive
recursive functions are Turing computable, and the Turing
computable functions are definable by bounded formulas.

◮ But now that we have Gödel’s β-function, we could prove it
again, without mentioning Turing machines, directly by
induction on the definition of primitive recursive functions.

◮ The same formula that was constructed in the previous proof
to represent f also defines it.

◮ It is easier to prove definability than representability, as we
don’t need to check that facts about division and remainder
are provable.



Every µ-recursive function is representable in PA

Technically we defined “representable” only for total functions.
But changing = to ∼= in the definition, we can speak about
representability of partial functions.

Every µ-recursive function has the form

f(x) ∼= µy R(x, y)

where R is a primitive recursive relation. Let A(x, y) represent R.
Then

B(x, y) := A(x, y) ∧ ∀z < y ¬A(x, z)

represents f .

◮ If f(x) = y, then R(x, y) and for all z < y, not R(x, y).
Hence ⊢ A(x̄, ȳ).

◮ Since z < ȳ is equivalent to the disjunction of the z̄ < ȳ for
z < y, and the formulas A(z̄, ȳ) are all refutable for z < y, we
have ⊢ ¬∃z < ȳA(z, ȳ).

◮ Hence ⊢ B(x, y).



The representable functions are all computable

Let f (which takes n variables x) be represented by a formula
A(x, y).

◮ To compute f(x), we search for a y and a proof of A(x̄, ȳ).

◮ Explicitly, for k = 1, 2, . . ., we examine all proofs of length at
most k to see if one of them ends in A(x̄, ȳ) for some y.

◮ To make this into a proof that representable functions are
µ-recursive, we only need to assign numbers to proofs
somehow.

◮ We will do that next time.



Summary

The same class of partial functions is defined by

◮ The µ-recursive functions

◮ The functions representable in PA

◮ The Turing-computable partial functions



The Chinese Remainder Theorem

Let m1, . . . mn and c1, . . . cn be given. We want to solve x = cj

mod mj simultaneously for j = 1, 2, . . . , n.

◮ Let N the product of all the mi and X = {1, 2, . . . , N − 1}.

◮ Let Y be the set of n-tuples 〈a1, . . . an〉 with ai < mi.

◮ Define F : X → Y by F (x) = 〈x mod m1, . . . , x mod mn〉.

◮ There are N elements of X and N elements of Y .

◮ F is one-to-one, since if F (x) = F (y) with y < x, that means
x = y mod mi for each i ≤ n, so x − y is a multiple of each
mi. Since the mi are relatively prime, x − y is a multiple of
their product N ; but that contradicts x < N and y < N .

◮ By the pigeon-hole principle, F is onto, i.e. every member of
Y has the form F (x).

◮ But that is exactly the conclusion of the Chinese remainder
theorem.



Remarks about the Chinese Remainder Theorem

◮ The algorithm implicit in that proof is just a brute-force
search.

◮ It is possible to do much better.

◮ For the purposes of this course, we don’t care.

◮ You can find out more at the Wikipedia or Math World
articles.

◮ The Chinese remainder theorem can be stated in PA, using
sequence numbers to code the sequences.

◮ Even the pigeonhole principle can be stated and proved in
PA, using sequences to code finite functions.

◮ In the exercise, you are not asked to do this, but you are
asked whether we need to do it.


