
Lecture 12

Arithmetization of Syntax

Michael Beeson

Gödel numbers

◮ Gödel realized that the syntax of first-order logic can be coded
as numbers.

◮ Today that does not seem like a deep realization, since
formulas and terms are given by strings, strings are made of
characters, characters have ascii codes that are made of bits,
and long strings of bits are just large integers.

◮ If syntax is carefully defined, in fact the encoding of terms and
formulas into numbers could be just the identity map!

Variables and constants

◮ Kleene says (p. 70) a variable is a, b, c, The three dots
need to be made more precise. Page 252, he says precisely
that the variables are a with any number of subscript 1s.

◮ Modern books usually say x1, . . . , xn, . . ., which agrees with
Kleene if we require n to be written in unary.

◮ We don’t want to allow arbitrary strings for variable names, as
there is the problem of distinguishing variables from
constants, etc.

◮ Each theory T will have to declare its own constants, so for
example in group theory we can declare e to be a constant if
we wish. In that case we would have to modify the definition
of variable so e doesn’t qualify.

◮ We focus on PA. The only constant is 0 so we have no
conflicts.

Some remarks on variables

◮ Thus variables are strings of ascii characters.

◮ In typesetting terminology, they are not glyphs.

◮ An x is an x, whether it is in italics or roman or boldface, and
regardless of the font size. These are matters of the display of
the object.

Defining syntax

◮ Today the natural way to formalize syntax is to use grammar
notation.

◮ We follow Kleene, p.70, where only informal notation is used.

char:- [a-z] | [A-Z].

digit:- [0-9].

digit_string:- digit | digit digit_string.

variable:- char | char _{digit_string}.

That way, the variable x 27 is just the TEX code for x27

Function symbols

◮ Again, each theory should declare its own.

◮ In the case of PA, we don’t have to worry about conflicts
between variables and function names as the only function
symbols are those for successor, multiplication, and addition.

◮ Conveniently, there are ascii symbols +, *, ’.

function_symbol :- + | ’ | *.

Terms

constant :- 0.

term:- constant | variable | compound_term.

compound_term :- (term ’) | (term + term)

| (term * term).

◮ Here we explicitly allow for infix and postfix notation.

◮ Note the many parentheses that are officially required.

◮ We never needed function symbol, but it would in other
theories be useful.

Logical symbols

◮ Unfortunately the logical symbols do not have ascii codes.

◮ Instead we use something like TEX codes.

propositional_connective:-

\land | \lor | \implies | \neg.

quantifier:- \forall | \exists.

We regard, for example, ⊃ as just another name for \implies.

Formulas

atomic_formula :- term = term.

formula :- atomic_formula | compound_formula.

compound_formula :-

(formula propositional_connective formula).

compound_formula :- (quantifier variable formula).

Use of grammar notation

◮ According to our definitions, terms and formulas are strings
over the ascii alphabet.

◮ For example, the formula 2̄ + 2̄ = 4̄ is really
((((0’)’) + ((0’)’)) = ((((0’)’)’)’)).

◮ ∀x, y (x′ + y = x+ y′) is really

(\forall x (\forall y (((x’) + y) = (x + (y’)))))

◮ In Kleene, too, formulas are “sequences of symbols”, which
amounts to what we now call strings.

Parsing

◮ When we want to define something “by induction on terms”,
or “by induction on the complexity of a term t”, we want to
define, for example, the value on (u + v) in terms of the
value at u and the value at v.

◮ This presumes that the relevant occurrence of + can be
uniquely identified and computed.

◮ That is done by an algorithm called “parsing”.

◮ Such algorithms are discussed in computer science and there
are tools such as yacc and lex for generating them
automatically from the grammar.

◮ Kleene and all other textbook authors do not treat this matter
fully. See pp. 73-74, where Kleene discusses unambiguity of
parentheses. That’s as close as he comes to parsing.

Functor and Arity

◮ The upshot of parsing is that there are computable functions
functor and arity that take a term or formula (as a string)
and return the “main symbol” or functor, and the number of
arguments, respectively.

◮ For example, on the input ((x+y)=z), the functor is the
character =, and the arity is 2.

◮ On the input (x+y), the functor is +, and the arity is 2.

◮ On the input x, the functor is x and the arity is 0.

◮ On the input

(\forall x (\neg (x’ = 0)))

the functor is \forall and the arity is 2. The first argument
is the variable x and the second is the formula after the
quantifier.

◮ Note that the arity is not 1. We need to consider the variable
that is being quantified.

Extracting the arguments

Parsing also enables us to extract the indices of the parts of the
input string that match the right side of a grammar rule. For
example, consider the rule

term :- (term + term)

Applied to the input (x+y) we can extract not only the functor and
arity, but also the first and second arguments, namely x and y.

The parsing algorithm should provide computable functions arg1
and arg2 to do this. In PA, the maximum arity is 2, so this is
enough.

Parsing considered

There is, however, no good reason to ignore parsing. (I did promise
to prove everything for you.) We consider how it is done for the
case of PA.

◮ If there’s no initial paren, then it is a constant, or variable, or
error.

◮ If there is an initial paren, and what follows is a quantifier and
then a variable, then the last character should be right paren,
and we delete it and parse recursively what follows the
quantifier. It should be a formula, or we have an error. That
formula is the second argument; the arity is 2, and the first
argument is the variable. The functor is the quantifier at the
beginning. If the quantifier is not followed by a variable that is
also an error.

◮ Otherwise the input has to be a formula or a term.

Parsing continued

◮ The key is to keep a parentheses count while moving right
over the input after the initial left paren.

◮ We start at 0 and increment for left paren, decrement for
right paren. If we encounter an =, +, or * sign with paren
count 0, that is the functor, and we can locate the two
arguments and parse them recursively. If the paren count
becomes negative, it is an error.

◮ If the paren count returns to zero and we see a ’ symbol just
left of the final paren, then the arity is 1. Delete the first and
last parens and parse the string between them to get the arg.

Parsing is primitive recursive

◮ Here we identify strings with the numbers whose 8-bit
segments give the characters of the string.

◮ The recursive algorithm on the previous slide is defined by
course-of-values recursion, since the arguments of the
recursive call are always shorter than the top-level argument.

◮ The functions that extract the substrings are defined in terms
of division by 2, to extract certain bits, so they are primitive
recursive.

◮ The primitive recursive functions are closed under
course-of-values recursion.

◮ Conclusion: functor, arg1, arg2, and arity are primitive
recursive.

◮ They are total functions, returning a specified value err
(perhaps 255) if parsing fails.

Summary

◮ Each string is identified with a number whose bits are the bits
of its characters.

◮ We worked out examples of this “coding” at the beginning of
the course.

◮ Thus each string “is” a number.

◮ In particular each variable, term, formula is a number as well
as a string.

◮ The functions functor, arity, arg1, and arg2 are primitive
recursive.

An alternative to parsing

◮ We could just define a term to be a sequence (f, a, b) where f
is a function symbol of arity 2 and a and b are terms, or a
sequence (f, a), where f is successor and a is a term. Then
the functions arity, functor, arg1, and arg2 would already
exist, easily defined from length(x) and x[i], the unpacking
functions for sequences.

◮ But using strings corresponds to the natural human use of
formal systems.

◮ Also, using strings is necessary to implement logic on a
computer.

◮ Therefore I discussed the parsing issue.

Gödel numbers

◮ Historically, this result was achieved differently, as Gödel
worked two decades before the ascii code was defined, and
strings were not as well-understood then as now.

◮ We therefore discuss the traditional method of reducing
formulas, terms, etc. to numbers.

◮ Gödel assigned a number, since called the Gödel number, to
each syntactic object.

◮ The Gödel number of a formula φ is written

pφq.

◮ Here φ is a string and pφq is a number.

◮ See Kleene, §52, p. 254 for details.

◮ In these lectures, I continue to use pφq when I want to
emphasize that string φ is being considered as a number, e.g.
so it can be discussed in PA.

Basic syntax is primitive recursive

The following predicates are primitive recursive. Here x ranges
over numbers, thought of as strings.

◮ x is a term

◮ x is a constant

◮ x is a variable

◮ x is a formula

The characteristic functions of these predicates can be defined in
terms of functor, arity, arg1, and arg2, following the recursive
definitions given earlier.

Substitution
Recall that t[x := s] is the result of substituting term s for each
free occurrence of x in term t.

Now that we are regarding t and s as numbers, we want to show
that t[x := s] is a primitive recursive function Subst(s, x, t) of s,
x, and t.

◮ Here t can be a formula as well as a term.
◮ It is defined by recursion on t. The recursive call applies
Subst to the arguments of t.

◮ If t is a quantified formula, and the first argument of t is x,
then we return the second argument unchanged. (Because we
are only substituting for free occurrences of x.)

◮ In all other cases, we call Subst on the arguments of t, and
then combine the results to create a new term or formula with
the same arity and functor as t.

◮ Since the arguments are smaller than the input, this is
definable by course-of-values recursion, and hence is primitive
recursive.

Free and free-for

◮ Compare Kleene p. 253.

◮ E contains x free if Subst(0, x,E) 6= E. This is a clever
reversal of our intuitive idea that Subst is defined in terms of
“free”.

◮ t is free for x in E means that you can substitute t for x in E
without accidentally “capturing” other free variables of t by
substituting inside scopes where they are quantified.

◮ If x is not a variable or t is not a term, then t is by definition
not free for x in E.

◮ Otherwise “free-for” is defined recursively.

◮ The main clause is that t is free for x in ∀yφ if either φ does
not contain x free, or t does not contain y free and t is free
for x in φ.

◮ free-for is also primitive recursive since it’s defined by
course-of-values recursion.

◮ Similarly for ∃.

Propositional Axioms

There are infinitely many axioms. There are finitely many logical
axiom schemata. The axioms are those formulas that “have a
certain form.” For example, all formulas of the form

(A ⊃ (B ⊃ A))

are axioms. A string is an axiom of this form if its functor is ⊃ ,
its first arg is a formula A, its second arg has functor ⊃ , and the
second arg has a formula for its first arg and the second arg is
exactly A. This is a primitive recursive definition.

Similarly, there are primitive recursive predicates defining what it
means for a formula to match each of the (finitely many)
propositional axiom schemata. Hence the predicate PropAx(x)
defining “x is a propositional axiom” is primitive recursive.

Quantifier Axioms
There are two quantifier axiom schemata, both of which assume t
is free for x in A:

∀xA ⊃ A[x := t]

A[x := t] ⊃ ∃xA

For each of these two, the predicate “u has the the form of this
axiom schemata” is primitive recursive.

◮ The hard part of this is to extract t primitive recursively. Note
that t is not given explicitly. Suppose for the moment we can
do that. Then consider the first axiom schema.

◮ The predicate we need to define says that u is a formula, the
functor of u is ∀, the first arg is a variable x, the second arg
has functor ⊃ , and if A is its first arg then its second arg is
equal to Subst(t, x,A).

◮ Since Subst is primitive recursive, and the primitive recursive
predicates are closed under “and”, we’ll be done as soon as
we can extract t primitive recursively.

Extracting t from A[x := t] and A

◮ Kleene says nothing about this issue; perhaps the notation
A(x) and A(t) caused him not to notice that it is an issue.

◮ Here’s an algorithm to do it: compare the two inputs
A[x := t] and A[x] character-by-character until they differ, say
with your left index finger pointing into A[x := t] and your
right pointing into A[x]. When they first differ (at position i),
you must have x on the right and the start of t on the left. So
move your left finger farther along to the least j such that the
substring between i and j is a term. That term is t.

◮ That function is primitive recursive, since Term(u) is
primitive recursive, and the primitive recursive functions are
closed under bounded search. (We search first for the first
mismatch, and then for j such that the substring from i to j
is a term.)

Numerals

◮ The function Num(x) = px̄q is primitive recursive.

◮ Num(0) = p0q = 48.

◮ Num(x+ 1) is the number corresponding to the string
formed by concatenating "(" with Num(x) and ")".

One of your homework problems is to finish this proof.

D is an immediate consequence of E

This means E has the form C ⊃ A and D has the form
C ⊃ ∀xA, where A and C are formulas and x is not free in C.

◮ We first check that A and D are both formulas with functor
⊃ .

◮ Then we check that they both have the same first argument
C.

◮ Let Q = arg2(D). If functor(Q) 6= ∀ then D is not an
immediate consequence of E. If functor(Q) = ∀ then
arg1(Q) must be a variable, and arg2(Q) must equal arg2(E)
(which is A). If any of these conditions fails then D is not an
immediate consequence of E.

◮ If they all hold, then D is an immediate consequence of E.

◮ Those are all primitive recursive functions and relations, so
this is a primitive recursive relation.

D is an immediate consequence of E and F

That means that F has the form E ⊃ D.

functor(F) = p ⊃ q ∧ arg1(F) = E ∧ arg2(F) = D

The proof predicate Prf

◮ Recall that we have primitive recursive functions length(x)
and x[i] to extract the length and members of a coded
sequence.

◮ It doesn’t matter what sequence coding we use as long as the
coding and uncoding are primitive recursive.

◮ A proof is a sequence Y such that:

◮ For each i < length(Y), Y [i] is a formula, and one of the
following holds: Either

◮ Y [i] is an axiom, or

◮ ∃j < i (Y [i] is an immediate consequence of Y [j]), or

◮ ∃j, k < i(Y [i] is an immed. consequence of Y [j] and Y [k]).

◮ There is a primitive recursive predicate Prf(Y) defining “Y is
a proof.”

We say that a proof is a proof of its last formula. Thus:

Prf(Y,A) := Prf(Y) ∧A = Y [length(Y)− 1]

Prf is primitive recursive

Proof: it is defined by bounded quantification over a primitive
recursive predicate.

◮ Therefore it is Turing computable

◮ and representable

◮ That means we really can discuss the meta-theory of PA
within PA.

Fun with Gödel numbers

The result of substituting the numeral for m for x in φ:

φ[x := m̄]

is a formula whose Gödel number is given by a primitive recursive
function of m, even though m is not a free variable of φ[x := m̄].
Namely,

Subst(Num(m), pxq, pφq).

Note that Subst takes three Gödel numbers. Num(m) is already a
Gödel number. Subst is not a formula, it is a primitive recursive
function, so its arguments should be numbers, not terms.

More fun with Gödel numbers

Now we can substitute that number into another formula ψ:

ψ[z := pφ[x := m̄]q]

and miraculously this too is given by a formula of PA with free
variable m:

ψ[z := Num(Subst(Num(m), pxq, pφq))]

Technically that is not a formula as it stands, as Subst and Num
are not symbols of PA. But let P (m, y) represent the function on
the right of :=. Then what we mean is

∃z P (m, z) ∧ ψ.

In sloppy short notation

If ψ(z) and φ(x) are formulas with one free variable then ψ(φ(m̄))
is a formula with one free variable m.

◮ It is vital to understand exactly what this means, as spelled
out precisely on the previous slides.

◮ Understanding this point is necessary to understand Gödel’s
proof of his incompleteness theorem.

◮ To study this, write down on a blank page, ψ(φ(m̄)), and
without looking try to write out exactly what it means.
Repeat until you can do it.

◮ This may take many attempts. Mathematical logic, as I told
you the first day, is not a spectator sport.

Σ0
1 relations and formulas

◮ A Σ0
1 formula is a formula of the form

∃z1, . . . , zmA(x, y, z1, . . . zm)

where A is a bounded arithmetic formula.

◮ A Σ0
1 relation is one defined by a Σ0

1 formula

◮ Example: the formula defining x < y, namely ∃z (z′ + x = y).

◮ Non-example: the formula ∀x, y (x′ + y = x+ y′), is not Σ0
1,

because it begins with ∀, not ∃.

◮ In an exercise you were asked to show that all µ-recursive
functions have Σ0

1 graphs (using the T-predicate):

∃k (T(e, x, k) ∧ U(k) = y)

is a Σ0
1 formula, so the e-th Turing computable function has

Σ0
1 graph.

Conversely, if f has a Σ0
1 graph, then f is µ-recursive

◮ Suppose f(x) = y if and only if N |= ∃zA(x, y, z) where A is
a bounded arithmetic formula and z = z1, . . . , zm.

◮ Recall (k)i extracts the i-th member of a coded sequence.

◮ Then let

g(x) = µk (A(x, (k)0, (k)1, . . . (k)m+1)

◮ Then f(x) = (g(x))0.

◮ This gives us another characterization of the computable
functions: they are the ones with Σ0

1 graphs.

True Σ0
1 sentences are provable

◮ Note, sentences, i.e. no free variables.

◮ Let ∃xA(x) be a Σ0
1 formula, so A is bounded.

◮ The idea is that if there is an x such that A(x̄), we can just
verify (within PA) that indeed A(x̄) holds.

◮ if ∃xA(x) is true, that means there is an m such that A(m̄)
is true, i.e.,

〈N,+, ·, ′, 0〉 |= A[x := m̄]

◮ Since A is bounded, the relation it defines is represented by
A, so

⊢ A[x := m̄]

◮ then by ∃-introduction,

⊢ ∃xA

Provable implies provably provable

◮ Suppose ⊢ φ.

◮ That is, ∃kPrf(k, pφq) is true.

◮ Since that is a true Σ0
1 sentence, it is provable.

◮ Explicitly,
⊢ ∃kPrf(k, pφq).

◮ Note that φ is an arbitrary formula. It may have free variables
and many unbounded quantifiers.

