
Lecture 13

The First Incompleteness Theorem

Michael Beeson

The First Incompleteness Theorem

There is a true sentence of PA that is not provable in PA.

Let us see why this is called “incompleteness”:

◮ A theory T is complete if for every sentence φ, either T ⊢ φ

or T ⊢ ¬φ.

◮ If φ is true, i.e. satisfied in the standard model, then it is not
the case that PA ⊢ ¬φ, since all theorems of PA hold in the
standard model. (That’s what it means to be a model.)

◮ So, if a true sentence φ is unprovable, then PA is incomplete.

◮ Conversely, if PA is incomplete, then there is some sentence
ψ such that neither ψ nor ¬ψ is provable. In that case, one of
them is a true unprovable sentence.

Turing’s Proof

(I am not claiming historical accuracy in the name of this proof.)

◮ Let ϕe be the function computed by Turing machine e.

◮ We will show that if PA is complete, we can solve the halting
problem.

◮ The idea is that if PA is complete, then if ϕe(e) doesn’t halt,
there is a proof that it doesn’t halt, so we can find out that it
doesn’t halt by searching for a proof.

◮ So to find out if ϕe(e) halts or not, we search both for a
computation by machine e at input e, and also for a proof
that ϕe(e) doesn’t halt.

◮ If PA is complete, we must find one or the other, thus solving
the halting problem.

◮ On the next slides we write this up properly.

Two notational matters

◮ We write N |= ψ to abbreviate 〈N,+, ·, ′, 0〉 |= ψ.

◮ People often write T both for the T-predicate and the
formula that represents and defines it.

◮ But I will try to preserve the distinction, writing T for the
predicate and T for the formula.

Turing’s proof done properly

ϕe(e) halts iff N |= ∃kT(ē, ē, k)

ϕe(e) does not halt iff N |= ¬∃kT(ē, ē, k)

Suppose, for proof by contradiction, that PA is complete. Then

ϕe(e) does not halt iff ⊢ ¬∃kT(ē, ē, k)

Now we solve the halting problem as follows:

g(e, n) =











1 if T(e, e, n)

0 if Prf(n, p¬∃kT(ē, ē, k)q) and not T(e, e, n)

2 otherwise

Since Prf is primitive recursive, g is primitive recursive. Now define

f(e) = g(e, µk (g(e, k) < 2))

Then f(e) = 1 if ϕe(e) halts, and 0 if it doesn’t halt, but f is
µ-recursive and hence Turing computable. Contradiction, QED.

More details; every step shown

We claim that f solves the halting problem. Suppose ϕe(e) is
defined. Then ∃kT(e, e, k). Fix such a k; then T(e, e, k), so
g(e, k) = 0. We claim f(e) = 1. If not, then it is because there is
a proof of ¬∃kT(ē, ē, k).

Since PA proves only true theorems, ¬∃kT(ē, ē, k) is true; hence
∃kT(ē, ē, k) is false; hence ϕe(e) is not defined, contradicting our
assumption that ϕe(e) is defined. This proves that f(e) = 1 when
ϕe(e) is defined.

Details continued

Now suppose that ϕe(e) is not defined. Then for all k, it is not the
case that T(e, e, k), so for all k, g(e, k) 6= 1. Hence g(e, n) = 0 if
and only n is a proof of ¬∃kT(ē, ē, k). By the assumption that
ϕe(e) is not defined, this is a true sentence. By the assumption
that PA proves every true sentence, it has a proof in PA. Let n
be the Gödel number of such a proof. Then g(e, n) = 0; and since
for all k, g(e, k) 6= 1, we have f(e) = 0.

Therefore f(e) = 1 if ϕe(e) halts and f(e) = 0 if ϕe(e) does not
halt. Therefore f solves the halting problem. Since f is
µ-recursive, it is Turing computable. Hence f cannot solve the
halting problem. This contradiction completes Turing’s proof of
the incompleteness theorem.

Remarks on Turing’s proof

◮ It does not produce a specific true unprovable sentence.

◮ It does, however, show that for some number e, the formula
expressing that ϕe(e) does not halt is true but unprovable. It
just doesn’t exhibit a particular e.

◮ It relies heavily on the machinery we developed, to know that
Prf is primitive recursive, which we need in order to see that g
on the previous slide is primitive recursive, and to know that
primitive recursive functions are Turing computable.

◮ Turing’s work came five years after Gödel’s, so Gödel’s proof
did not involve Turing machines and the halting problem.

The self-reference lemma and Gödel’s proof

◮ The theorem we are about to state and prove is traditionally
known as the “self-reference lemma”, though it certainly
deserves to be called a theorem.

◮ It encapsulates Gödel’s method of self-reference.

◮ Gödel certainly knew this theorem, because he gave several
applications of it, but I do not think he ever stated it.

◮ Even more surprisingly, it does not occur in Kleene’s textbook.

◮ Even more surprisingly, it does not occur in Shoenfield’s
famous 1967 textbook.

◮ I have it handwritten inside the back cover of my copy of
Shoenfield. I learned it orally from my teachers.

Notation

When ψ is a formula with a free variable z, and φ is another
formula, the result of substituting the numeral for pφq into ψ
would be written

ψ[x := pφq]

Because this is typographically complicated, it is often shortened
to ψ[z := pφq], or even ψ(pφq).

This is actually unambiguous abbreviation, since the only
syntactically correct interpretation of the notation ψ(pφq) is the
former (more complicated) expression, since pφq is a number, not a
term, and you need a term (in this case a numeral) to substitute.

However, in the following proof we shall use the completely precise
notation, for the benefit of readers encountering this material for
the first time.

The Self-reference Lemma (statement, not yet proof)

Let ψ(z,x) be a formula of PA with free variables z and x. Then
there exists a formula φ with free variables x such that

PA ⊢ φ ≡ ψ[z := pφq]

Somewhat less precisely,

PA ⊢ φ ≡ ψ(pφq)

Remark. φ says, “I have the property ψ.”

Representation of Subst

We could add function symbols for Subst and Num
(conservatively over PA). I choose not to do so; but then we have
to represent Subst and Num by formulas to discuss them in PA.

Let S(a, b, n, z) be a formula representing Subst. Then

⊢ S(ptq, pxq, pAq, z̄) if z = pA[x := t]q

⊢ ¬ S(ptq, pxq, pAq, z̄) if z 6= pA[x := t]q

⊢ ∃!z (S(ptq, pxq, pAq, z)

and similarly for Num and its representing formula Num.

Enumerating the formulas with one free variable

We define An as follows:

◮ If n is the Gödel number of a formula with (at least) the
(specific) variable x free, then An is that formula.

◮ Otherwise An is the formula x = x.

Hence for every n, An is a formula with exactly the free variable x.

Yet more fun with Gödel numbers

◮ The Gödel number of An[x := n̄], or for short An(n̄), is given
by

pAn[x := n̄]q = Subst(Num(n), pxq, n)

◮ That function is represented by the formula

∃wS(w, pxq, n, z) ∧ Num(n,w))

and it would be possible to bound the quantifier on w if
required.

◮ Let ψ be a fixed formula with one free variable x.

◮ We claim that there is a formula with one free variable x,
which can be informally described as

ψ(pAx(x̄)q)

◮ More precisely that has to be

∃z, w (S(w, pxq, x, z) ∧ Num(x,w) ∧ ψ[x := z])

ψ(pAx(x̄)q) continued

We said that has to be, precisely,

χ(x) := ∃z, w (S(w, pxq, x, z) ∧Num(x,w) ∧ ψ[x := z])

Note that x is the only free variable, if ψ has exactly one free
variable. But if ψ has more free variables then these variables
occur also in χ (and z should be chosen different from all free
variables of ψ).

Proof of the self-reference lemma

Recall χ(x) := ∃z, w (S(w, pxq, n, z) ∧ Num(x,w) ∧ ψ[x := z]),
which we abbreviate as ψ(pAx(x̄)q). Define

φ := χ[x : pχq]

or informally, φ is χ(pχq).

We claim ⊢ φ ≡ ψ[x := pφq]. Let n = pχq. We have (provably)

φ ≡ χ(pχq) ≡ χ(n̄)

≡ ψ(pAx(x̄)q)[x := n̄]

≡ ψ(χ(pχq)) because An is χ

≡ ψ(pφq)

Self-reference and fixed points

We note the similarity between the proof of the self-reference
lemma and the fixed-point theorem of λ-calculus. There we took
ω = F (λx (xx)) and then showed ωω = F (ωω).

Here we took χ = ψ(Ax(x)) and showed χ(χ) ≡ ψ(χ(χ)),
ignoring Gödel numbers and numerals to show the parallel
structure of the proofs.

If there was imitation, chronology tells us Church imitated Gödel,
not the other way around. But remember, Gödel didn’t state the
self-reference lemma explicitly.

Gödel’s proof of the first incompleteness theorem

Take ψ(n) := ¬∃xPrf(x, n). By the self-reference lemma choose

φ ≡ ψ[n := pφq]

Then φ says “I am not provable.”

Suppose, for proof by contradiction, that φ is false. Then it is
provable, and hence true, since all theorems of PA are true.
Contradiction. Hence φ is not false. Hence it is true. Hence it is
not provable. QED.

Remark on Gödel’s presentation

Gödel’s original paper does not separate the self-reference lemma
out as a theorem in its own right, but gives the diagonal argument
in the specific case when ψ in the self-reference lemma is the
formula ¬∃kPrf(z, k).

Other applications of self-reference

Church proved that the truth set of arithmetic is not recursive.
Now we can prove it is not arithmetical, i.e. not definable by any
formula of PA. Of course by countability, there are many
undefinable sets of integers, but this is the first one to be explicitly
exhibited (both historically, and in these lectures).

First let us precisely define the truth predicate:
True(n) is true if and only if n is the Gödel number of a sentence
φ of PA such that N |= φ. Recall this is short for
〈N,+, ·, ′, 0〉 |= φ.

The definition can be made more explicit this way. For each fixed
n, we can define the truth predicate Truen for formulas of no
more than n symbols by clauses like this one: Truen+1(p∀xA(x)q)
if and only if for all m, Truen(pA[x := m̄]q). Thus we need about
n quantifiers to define truth for formulas of complexity up to n.
This makes it not too surprising that truth for all formulas of PA
is not arithmetical.

Tarski 1948: Undefinability of truth

The predicate True(n) is not arithmetical.

Proof. Suppose that True were definable by a formula ψ(x) of
PA. By the self-reference lemma, we could then choose φ to say
“I am false”. More precisely,

PA ⊢ φ ≡ ¬ψ(pφq)

If φ is true, then ψ(pφq) is false, so φ is false, since ψ supposedly
defines True. Hence φ is false. But then similarly, φ is true,
contradiction. That completes the proof.

Thus the “liar’s paradox” becomes not a paradox, but a theorem
on the undefinability of truth. Tarski generalized this to show that
no language stronger than some minimal strength can define its
own truth.

