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The hypotheses needed to prove incompleteness

The question immediate arises whether the incompleteness of PA

can be “fixed” by extending the theory.

Gödel’s original publication was about Russell and Whitehead’s
theory in Principia Mathematica. First-order logic was not yet a
standard concept– that really didn’t happen until the textbook of
Hilbert-Bernays appeared in the last thirties, and because WWII
arrived soon on the heels of Hilbert-Bernays, it was at least 1948
before the concept was widespread.

Gödel’s methods were new and confusing: first-order logic was
ill-understood, Gödel numbering was completely new, the diagonal
method was confusing, the arithmetization of syntax was confusing.
There were doubts about the generality of the result. Maybe it was
a special property of Principia Mathematica? Then (as now) few
people were familiar with that dense and difficult theory.



Maybe we just “forgot some axioms”?

An examination of the proof puts that idea to rest. Clearly the
proof applies to any theory T such that

◮ T contains PA

◮ The proof predicate PrfT (k, x) (“k is a proof in T of the
formula with Gödel number x”) is recursive (so representable)

◮ the axioms of T are true in some model whose “integers” are
isomorphic to the structure defined by N with standard
successor, addition, and multiplication.



It works for all the axiom systems we know

◮ In particular those conditions apply to the strongest axioms
accepted by most mathematicians, for example
Zermelo-Frankel set theory with the axiom of choice, ZFC.

◮ So there are true sentences of arithmetic that are not provable
even with the aid of all the axioms known to mathematics.

◮ And if someone discovers more axioms, there will still be true
sentences that the new axioms don’t prove.



Weakening the hypotheses

◮ Another reason for examining the hypotheses is to try to
formalize the proof of the incompleteness theorem.

◮ In the proofs of the incompleteness theorem given above, we
have freely assumed that all theorems of PA are true, i.e.
satisfied in N.

◮ But we already know that truth in N is not an arithmetical
predicate, so the proofs we gave above of the First
Incompleteness Theorem cannot be formalized in PA.

◮ For various reasons, both philosophical and mathematical, we
would like to weaken the hypotheses of the incompleteness
theorem to the point where we could formalize the proof in
PA.



ω-consistency

◮ Gödel defined a theory to be “ω-inconsistent” if for some
formula A, each instance A(n̄) is provable but also
⊢ ¬∀xA(x).

◮ Then a theory is ω-consistent if it is not ω-inconsistent.

◮ Omega consistency implies consistency, but it is stronger (see
Exercise 13.1).

◮ The right way to think of ω-inconsistency is given in the
following lemma:

Lemma
if T is ω-consistent and T extends PA, and R is a bounded

arithmetic predicate with only k free, and T ⊢ ∃k R(k), then for

some k, T ⊢ R(k̄).



ω-consistency made understandable

Lemma
if T is ω-consistent and T extends PA, and R is a bounded

arithmetic predicate with only k free, and T ⊢ ∃k R(k), then for

some k, T ⊢ R(k̄).

Proof. Suppose T and R are as stated, and suppose T ⊢ ∃k R(k).
Then

T ⊢ ¬∀k¬R(k).

By ω-consistency, for some k, T does not prove ¬R(k̄). Since R is
a bounded arithmetic formula, the predicate defined by R is
represented by the formula R. Then either T ⊢ R(k̄) or
T ⊢ ¬R(k̄), depending on whether R(k) is true or false. Since in
this case T does not prove ¬R(k̄), it follows that T ⊢ R(k̄). That
completes the proof.



Recursively axiomatizable theories
A theory T is called “recursively axiomatizable” if some set of
axioms for it is recursive. (Technically, the set of Gödel numbers of
axioms is recursive). That will result in its having a recursive proof
predicate PrfT .

Theorem (Gödel)

Let T be an ω-consistent recursively axiomatizable theory

extending PA. Then T is incomplete.

Proof. We go over the proof of the First Incompleteness Theorem
to check that the assumption of truth can be replaced by the
assumption of ω-consistency. Let PrfT be the proof predicate for
the theory T . Choose φ by the self-reference lemma to say “I am
not provable.” Specifically, choose φ so that

PA ⊢ φ ≡ ¬∃k PrfT (pφq, k).

Now we claim that if T is consistent, φ is not provable, and if T is
ω-consistent, then ¬φ is not provable.



With PA ⊢ φ ≡ ¬∃k PrfT (pφq, k)
First suppose T is consistent and φ is provable in T . Let k be the
Gödel number of a proof of φ. Then PrfT (pφq, k) is true.
Recall that PrfT not only defines, but also represents, the proof
predicate of T . Therefore we have

PA ⊢ PrfT (pφq, k̄)

Then PA also proves, in one more inference, ∃k PrfT (pφq, k̄). But
that is provably equivalent to ¬φ. Since T extends PA, T also
proves ¬φ. But now T proves both φ and ¬φ, contradicting the
consistency of T . Hence φ is unprovable, as claimed, if T is
consistent.
Now suppose that T is ω-consistent and that ¬φ is provable. Then
since T extends PA, and using the formula in the slide title,

T ⊢ ∃k PrfT (pφq, k).

By ω-consistency and the lemma above, there is a k such that

T ⊢ PrfT (pφq, k̄).



We showed there is a k such that

T ⊢ PrfT (pφq, k̄).

The formula PrfT has been chosen (we suppose) to both define
and represent the proof predicate of T , so k really is a proof of φ.
Then T ⊢ φ. But then T proves both φ and ¬φ, and hence T is
inconsistent. But by Exercise 14.1, ω-inconsistency implies
consistency, contradiction. That completes the proof.



Rosser’s Theorem
Kleene’s student Rosser was able to eliminate the hypothesis of
ω-inconsistency, replacing it with simple consistency.

Theorem (Rosser, 1936)

Let T be a recursively axiomatizable consistent theory extending

PA. Then T is incomplete.

Proof. Choose φ by the self-reference lemma to say, “for every
proof of me, there is a shorter proof of my negation.” More
formally: let A(k, z) be the bounded arithmetic formula

PrfT (z, k) ⊃ ∃j < k (PrfT (Neg(z), j))

and choose φ by the self-reference lemma so that

PA ⊢ φ ≡ ∀k A(k, pφq) (1)

Then

PA ⊢ φ ≡ PrfT (pφq, k) ⊃ ∃j < k (PrfT (p¬φq, j))



Rosser’s theorem continued

PA ⊢ φ ≡ PrfT (pφq, k) ⊃ ∃j < k (PrfT (p¬φq, j)) (2)

Now suppose φ is provable in T . Let k be (the Gödel number of) a
proof of φ in T . Since PrfT represents the proof predicate of T ,

PA ⊢ PrfT (pφq, k̄)

Since T proves φ, and T extends PA, it follows from (2) that

T ⊢ ∃j < k̄(PrfT (p¬φq, j)) (3)

The formula on the right defines a bounded arithmetic predicate,
and hence it represents that same predicate. Since T is consistent,
the formula ∃j < k̄(PrfT (p¬φq, j)) is false (if it were true, that
would contradict the fact that T proves φ). Since that formula
represents a primitive recursive predicate, it is refutable. But that,
with (3), contradicts the consistency of T . Therefore φ is not
provable in T .



Rosser’s theorem continued
On the other hand, if ¬φ is provable in T , then let j be the Gödel
number of the smallest proof of ¬φ. Then PrfT (p¬φq, j̄) is true.
Since PrfT represents the proof predicate of T , we have

PA ⊢ PrfT (p¬φq, j̄).

Hence PA ⊢ ∀k > j̄ A(k, pφq).
Therefore PA ⊢ φ ≡ ∀k < j̄ A(k, pφq).
Since ¬φ is provable, and T extends PA, we have

T ⊢ ∃k < j̄ ¬A(k, pφq).

This is a bounded arithmetic formula, so it represents the predicate
it defines, in this case a predicate of zero arguments, but still: if
that predicate is false, it is refutable, which would contradict the
consistency of T . Hence it is true, i.e. for some k < j, A(k̄, pφq)
is false. But A is an implication, so if it is false, the part before the
implication sign is true, which means k is proof of φ. But since ¬φ

is provable, that contradicts the consistency of T . That completes
the proof of Rosser’s theorem.



On the lengths of proofs

Gödel himself in a later publication studied the question of lengths
of proofs. Here we present a simple result in that direction.

Theorem (Gödel)

Let f be any primitive recursive function of one variable. Then

there is a formula φ of one free variable such that ∀xφ(x) is true,

but for each n, φ(n̄) has no proof with fewer than f(n) steps.

Proof. Choose φ by the self-reference lemma to say “I have no
proof shorter than f(n)”. Then, if φ(n̄) is false, it does have a
proof, and so it is true, contradiction. Hence φ(n̄) is true. Hence it
has no proof with fewer than f(n) steps.

On the next slide we will give the proof in more detail.



Details of the no-short-proof theorem

To make this proof more precise, we choose φ so that

PA ⊢ φ ≡ ∀k(length(k) < f(n) ⊃ (¬Prf(pφq, k))

where length is the length of a sequence (a proof is a sequence of
steps with justification), and “j < f(n)” means
∃y R(n, y) ∧ j < y), where R represents f .

Now we can check the steps of the proof as sketched before:

◮ If φ(n̄) is false, it does have a proof, and so it is true,
contradiction.

◮ Hence φ(n̄) is true.

◮ Hence it has no proof with fewer than f(n) steps.

◮ That completes the proof.



Lengths of proofs and incompleteness

We will show that the theorem on the lengths of proofs is actually
a generalization of the incompleteness theorem, or put another
way, the First Incompleteness Theorem is a corollary of Gödel’s
theorem about long proofs.

◮ If ∀xφ(x) is provable, then all the instances φ(n̄) have proofs
obtained from that fixed proof by substituting n̄ for x.

◮ These proofs are longer by about the length of n̄, which is
about n.

◮ so taking f in the long-proofs theorem to be, say n2, or any
function growing faster than n, we see that ∀xφ(x) is not
provable, where φ is the formula from the long-proofs
theorem.



What is the smallest theory for which the Incompleteness

Theorem works?

◮ We showed that it works for any recursively axiomatizable
consistent extension of PA.

◮ It is natural to consider replacing PA in this result by the
smallest possible subtheory of PA.

◮ So we examine what is actually used, and try to find the
minimum required axiom set.

◮ The answer was found by Raphael Robinson, Berkeley 1950.



Robinson Arithmetic

Here are the seven axioms of Robinson Arithmetic RA:

x′ 6= 0 (1)

x′ = y′ ⊃ x = y (2)

y 6= 0 ⊃ ∃x(x′ = y) (3)

x + 0 = x (4)

x + y′ = (x + y)′ (5)

x · 0 = 0 (6)

x · (y′) = (x · y) + x (7)

Axiom (3) is provable by induction in PA; the others are axioms of
PA.
Thus RA is PA without induction, plus the axiom
y 6= 0 ⊃ ∃x(x′ = y).



Raphael Robinson

Robinson was a professor at UC Berkeley. After Tarski arrived
there, he worked with Tarski for many years. He died in 1995.



RA is a very weak theory

◮ RA does not even prove the commutativity of multiplication

◮ I have not proved that fact for you, but at least you can see
that in RA, we don’t have induction available, which is how
we proved commutativity in PA.

◮ We will see that RA nevertheless represents all primitive
recursive functions.

◮ This highlights again the difference between representing
functions, and proving that those functions satisfy their
recursion equations (with a free variable), and proving
properties of those functions.



Presburger Arithmetic

If we drop multiplication (keeping only the first five axioms of
RA) we obtain Presburger Arithmetic.

◮ Presburger Arithmetic is decidable.

◮ This was proved by the Polish student Mojżesz Presburger in
1929, when he was 25 years old.

◮ Presburger was Jewish, so could not obtain an academic
position and died in the Holocaust.



Mojżesz Presburger



Proof of Robinson’s Theorem

◮ We need to check that RA can represent all primitive
recursive predicates.

◮ We did that in Lecture 11 for PA.

◮ In order to prove Robinson’s theorem, we need to check that
we do not need induction to prove that all primitive recursive
predicates are representable. We only need Axiom 3 (nonzero
numbers are successors), which in PA is proved by induction.

◮ This is not completely obvious.



On the definition of x < y

There is an issue about what is the right definition of x < y to use
in RA. Kleene defines it (§17, and again on pages 196 and 229,
with discussion on p. 196) as

∃z(z′ + x = y).

The alternative would be

∃z(x + z′ = y).

◮ These can be proved equivalent in PA, using induction, but
not (apparently) in RA.

◮ Which one should be used in RA?



A possible issue with x < y

We need to prove two things about x < y.

◮ That x < y is representable by the formula defining it.

◮ That works with Kleene’s definition, see p. 196, and see also
Lecture 10, where we verified that we did not need formal
induction, except to show that nonzero numbers are
successors, which is Axiom 3 of RA.

◮ that for each numeral n̄,

RA ⊢ x < n̄′ ≡ x = 0 ∨ . . . ∨ x = n̄.

◮ That works straightforwardly with the alternative definition, as
shown in the exercises for Lecture 10.

◮ With more difficulty, it also works for Kleene’s definition, see
Kleene p. 198 and the exercises.



Representability of β in RA

We need to check that the proof that β is representable works in
RA; that is, we never needed induction in the formal system.

◮ Indeed in the lecture slides we never needed induction.

◮ But we referred to Kleene p. 203 for the rest of the details.

◮ On that page, there’s also no formal induction.



The first incompleteness theorem works for RA

◮ We’ve proved it now.
◮ Kleene states it as Lemma 18a, p. 204, the implication being

that he has already proved it without stating it.
◮ Never mind that we didn’t prove

PA ⊢ x < n̄′ ≡ x = 0 ∨ . . . ∨ x = n̄

in RA. Kleene never claims that you can prove that in RA.
◮ Study guide: Note carefully the starred items near the top of

p. 204, that are not claimed to be provable in RA. Make sure
you understand that those formulas, involving variables
instead of numerals, say much more than that the functions
involved are representable. They say that those functions are
provably total.

◮ RA seems almost obvious today, but before Robinson, Kleene
was using another finitely axiomatizable theory, as Kleene says
on p. 533. Robinson’s abstract was available in time for the
printing of Kleene’s 1952 book, but not his publication; so he
must have changed his book to do things using only RA.



The Entscheidungsproblem, or Decision Problem
The problem is, does there exist an algorithm to determine if a
formula φ of predicate calculus is, or is not, provable in the
predicate calculus.

◮ By the completeness theorem, that’s the same as asking
whether there is an algorithm to determine the validity of φ,
i.e., is φ true in all models of the language used in φ?

◮ There is no such algorithm, as we now prove. Let A be the
conjunction of the axioms of RA. If there were such an
algorithm, we could decide whether

A ⊃ ∃k T(ē, ē, k)

is provable in predicate calculus.
◮ But that is if and only if RA ⊢ ∃k T(ē, ē, k), which is true if

and only if ϕe(e) halts, since RA is sound and proves every
true Σ0

1
sentence.

◮ So if the decision problem for predicate calculus were
recursively solvable, we could recursively solve the halting
problem.



RA and the Entscheidungsproblem

The proof we just gave depends on the facts that

◮ RA is finitely axiomatizable, and

◮ RA represents every primitive recursive predicate, in
particular, the T predicate, and therefore proves every true Σ0

1

sentence.

◮ But any finitely axiomatized theory with those two properties
would have worked, it did not need to be the absolutely
minimal theory RA.



Historical note

◮ Turing showed the Entscheidungsproblem could not be solved
by a Turing machine, in his original paper on Turing machines.

◮ He did not have the T-predicate or make any use of PA or
Gödel numbers.

◮ Instead, he directly formulated a theory in predicate calculus
whose models are Turing machine computations.

◮ The Entscheidungsproblem was a famous problem, put
forward in Hilbert-Ackermann’s 1928 logic textbook.

◮ It was solved independently by Turing and Church in 1936,
and its solution made both of them famous; but Church was
already well-known and Turing was only 24.

◮ Note the ambiguity: The Entscheidungsproblem refers both to
the problem of deciding validity in predicate calculus, and the
problem of whether or not there exists an algorithm to do
that. So Turing solved the Entscheidungsproblem by showing
that the Entscheidungsproblem cannot be solved by a Turing
machine.



Church’s theorem

There is no algorithm for deciding if a formula φ is a theorem of
PA.

Proof. PA ⊢ ∃k T(ē, ē, k) if and only if φe(e) halts. So if we could
decide the former by an algorithm, we could recursively solve the
halting problem.

◮ Church’s proof showed that there is no algorithm to decide
the equivalence or non-equivalence of two terms in the
λ-calculus, plus the definability of the λ-calculus in arithmetic.

◮ In other words, he used λ-calculus instead of Turing machines.

◮ This result also solves the Entscheidungsproblem.



Alonzo Church 1903–1995



Essentially Undecidable Theories

A theory T is called essentially undecidable if every consistent
extension of T is undecidable.

RA is essentially undecidable.

Proof. Let T be a consistent extension of RA.

◮ if T is decidable, then its theorems constitute a recursive
axiomatization. So if T is not recursively axiomatizable, it is
undecidable.

◮ Therefore we may assume T is recursively axiomatizable.

◮ Since T contains RA, all primitive recursive functions and
predicates are representable in T .

◮ Then the proof of Church’s theorem given above applies to T ,
so T is undecidable.

◮ That is (to review) T ⊢ ∃k T(ē, ē, k) if and only if ϕe(e) halts.


