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Discussion of incompleteness

◮ Hilbert believed that every mathematical problem has a
solution, and that we can find the solution to any given
problem, if we are smart and industrious enough.

◮ Gödel’s incompleteness theorems cast doubt on this
proposition.

◮ In this section we will focus on the first half-century of
attempts to wiggle out of this predicament.



What about making the theory stronger?

◮ Gödel’s original result was for Russell and Whitehead’s theory,
as set forth in Principia Mathematica, which was then the
gold standard for formalization.

◮ But it soon became apparent that the incompleteness
phenomenon depends only on the recursive axiomatizability
and consistency of the theory.

◮ Well, we certainly don’t want to give up consistency, and
mathematics without a listable set of axioms would hardly be
mathematics as we know it.



A hierarchy of stronger and stronger theories

Nevertheless, we can try to create a stronger-and-stronger
sequence of theories, possibly exhausting all true sentences in the
limit, but axiomatizable at each stage. Here is one way we could
try this. Suppose we have a way of strengthening a theory. We
already have two good ways to strengthen a theory T :

◮ Add ConT to T

◮ Add the reflection principle PrT (pAq) ⊃ A to T

Let T ∗ denote T strengthened in one of these (or some other) way.
Then we can form a progression of theories by

T0 = PA

Tn+1 = T ∗

n

Question: Is there a true formula A that is not provable in any Tn?
Yes, there is, because the union of the Tn is recursively
axiomatizable.



Ordinals
In set theory one considers “infinite numbers” known as ordinals.
These numbers are usually denoted by Greek letters (except for the
ordinary integers, which count as ordinals too). They are linearly
ordered. The rules defining them are

◮ 0 is an ordinal
◮ If α is an ordinal then α′, often written α + 1, is an ordinal.
◮ β < α′ if and only if β < α or β = α.
◮ If αn is an increasing sequence of ordinals then there is an

ordinal λ which is greater than all αn, but less than any other
ordinal greater than all αn. λ is a “limit ordinal”, i.e. not the
successor of any ordinal.

Here are some examples:
◮ The limit of the sequence 1, 2, 3, . . . is called ω.
◮ After that we have ω + 1, ω + 2, . . . , ω + ω = ω · 2.
◮ ω + ω + ω . . . = ω · ω = ω2.
◮ ω2, ω3, . . . , ωω, . . ..

There are more ordinals than names so there is no end of this
game. The name of the game is “ordinal notations.”



Transfinite Progressions

But the idea occurred to Turing to extend the progression of
theories based on extensions by consistency or reflection principles
into the transfinite.

Tα+1 = T ∗

α

and for λ a limit ordinal,

Tλ =
⋃

α<λ

Tα

Turing studied these transfinite progressions. Later Tarski’s
student Feferman (one of my teachers) wrote his thesis and an
early paper about these progressions. There are two results:

(1) for a suitably chosen progression, we can get all true sentences
of the form ∀xA with A bounded;

(2) but we still don’t get all true formulas.



Second-order arithmetic
◮ Another possibility is to start axiomatizing more of

mathematics than number theory.
◮ We will now describe a theory that is important in logic,

namely Z2, which is sometimes called “analysis”.
◮ Z2 has a two-sorted language, with one sort of variables for

numbers, and the other sort for sets of numbers (in the
“intended interpration”).

◮ There is one predicate n ∈ X that links the two sorts of
variables.

◮ Customarily one uses lower-case letters to range over variables
of the first sort, and upper-case letters to range over variables
of the second sort.

◮ Both second-order arithmetic and analysis contain the axioms
of PA.

◮ A sentence of this language is called “arithmetical” if it does
not contain any set quantifiers, i.e. no quantifiers over
variables of the second sort. It may contain free set variables.



The axioms of Z2

◮ The axioms of PA

◮ The schema of mathematical induction, extended to all
formulas of the language of Z2

◮ The comprehension axioms (one for each formula A(n) that
does not contain X)

∃X∀n (n ∈ X ≡ A(n))

Intuitively X = {n : A(n)}.



Analysis

◮ The reason that Z2 is called “analysis” is that the theory of
the real numbers, and piecewise continuous functions of the
real numbers, can be formalized in Z2, using pairs or triples of
integers to describe rational numbers, and sets or sequences of
rational numbers to define real numbers. Continuous
functions can be described by their values on the rationals.

◮ Since Z2 is a recursively axiomatizable theory, the
incompleteness theorems apply to it.

◮ Logicians have nevertheless had a lot of fun analyzing the
various subtheories of Z2 and comparing their strengths, both
to each other and to various mathematical theorems. For
example, we could restrict induction and comprehension to
only arithmetical formulas; and there are dozens of other
interesting systems. See Simpson’s book Reverse

Mathematics.



Real-closed fields

◮ Gödel threw us rudely out the gates of Hilbert’s paradise, and
after a while, the new realization of our situation began to
sink in.

◮ Tarski brought a ray of sunshine, by discovering a theory weak
enough that Gödel’s theorem does not apply, yet strong
enough to formalize high-school algebra and Euclidean
geometry.

◮ Tarski was able to prove that, in contrast to PA, this theory
is decidable and complete!

◮ So incompleteness applies to number theory, but not to
algebra and geometry, at least, ordinary Euclidean geometry
and high-school algebra.



Ordered fields

We describe a theory known as “ordered fields.”

◮ One important model is the real numbers 〈R,+, ·,P, 0, 1〉,
where P(x) holds if and only if 0 < x.

◮ The language of this theory has constants 0 and 1, binary
function symbols + and ·, a unary relation symbol P (x) (for
“positive”).

◮ The axioms say that the sum and product of positive elements
is positive, and that + and · satisfy the field axioms, i.e. both
are commutative and associative, the distributive law holds,
there are additive inverses and nonzero elements have
multiplicative inverses.

◮ Technically x < y is defined as ∃z (P (z) ∧ x + z = y).



Tarski’s theory RCF of real closed fields

The axioms of RCF are the axioms of ordered fields, plus the
axiom that positive elements have square roots:

P (x) ⊃ ∃y (x = y · y)

and the axiom schema that every non-constant polynomial of odd
degree has a root:

∃x (a0 + a1 · x + . . . anxn = 0) ∨ (a1 = 0 ∧ . . . an = 0)

where xn, for a fixed integer n, abbreviates the left-associated
product of x, taken n times.

◮ Tarski proved that RCF is complete and decidable.

◮ He also gave a first-order theory of Euclidean geometry and
showed that its models are all of the form F 2, planes over a
real-closed field F .



Expressive power of RCF

◮ It is possible to express some interesting and complicated
problems in the language of RCF, so there may have been a
flicker of hope to use Tarski’s decision procedure to solve such
problems.

◮ For example, problems about sphere-packing. Is the usual way
of packing oranges really the densest?

◮ All geometry problems, e.g., the medians of any triangle meet
in a point.

◮ There are unsolved problems that can be expressed in this
language.



Computational intractability of RCF

◮ Tarski’s procedure was worse than double-exponential in the
size of the formula to be decided.

◮ Later it was shown that any decision procedure has to be at
least as slow as double exponential in the number of variables.

◮ Such procedures have been discovered and implemented, but
four or five variables is about the practical limit, and no
interesting problems have been solved this way.

◮ See Section 10 of The mechanization of mathematics, in
Teuscher, C. (ed.) Alan Turing: Life and Legacy of a Great
Thinker, pp. 77-134. Springer-Verlag, Berlin Heidelberg New
York, 2003. for further discussion and examples. If you’re
reading this online, the blue title is a link.

http://www.michaelbeeson.com/research/papers/turing2.pdf


Set Theory
◮ Zermelo-Frankel set theory is also a first-order theory, and

hence it is subject to the incompleteness theorems.
◮ Somewhat in the spirit of the transfinite progressions of

theories mentioned above, set theory has explored the
possibility of adding new axioms to increase the strength of
the theory. We have inaccessible cardinals and measurable
cardinals and other “large cardinal axioms”. These fade into
the infinite distance like railroad tracks. Even if one believes
them, the augmented theories still are subject to the
incompleteness theorems.

◮ One cannot, however, entirely dismiss these axioms as having
no concrete content, because, according to the incompleteness
theorems, every time we assume a stronger large cardinal
axiom, we prove more arithmetical theorems.

◮ For example, if we assume Z2 we can prove ConPA, and if we
assume a measurable cardinal, we can prove ConZF , and
these consistency statements are fundamentally statements
about the integers and addition and multiplication.



Independence of AC and CH: work of Paul Cohen

◮ If we cannot escape the facts exposed by the incompleteness
theorems, we can try to minimize their significance.

◮ The propositions shown to be unprovable by the proof of the
incompleteness theorem are said to be “artificial” assertions
such as “would never arise in the course of normal
mathematics.” It was therefore alleged that incompleteness
was irrelevant to mathematics as practiced by mathematicians.

◮ This claim was put to death by Paul Cohen, who showed in
1963 that the axiom of choice is unprovable in ZF, and the
continuum hypothesis is unprovable in ZFC. (Gödel had
shown in the forties that both AC and CH are consistent with
ZF.)

◮ Since these questions had arisen at the dawn of set theory and
been the focus of much mathematical effort, it was no longer
possible to maintain that independence results were irrelevant
to mathematics.



No escape from Cohen’s results by large cardinal axioms

◮ Moreover, Cohen’s method extends to all known large cardinal
axioms, leaving us in complete ignorance about the truth of
AC and CH, assuming that we still believe that they have a
definite truth value, which we just don’t know.

◮ Others have decided that our notion of “set” is simply not
clear enough to settle these issues, so perhaps AC and CH do
not have definite truth values. On this view, we understand
sets well enough to work with real numbers, but not well
enough to work with the complicated sets involved in large
cardinal theory, etc.

◮ This view is perhaps bolstered by the fact that before
Russell’s paradox, we thought that our intuition gave us
evidence for the unrestricted comprehension axiom

∃x∀y (y ∈ x ≡ φ(y)

whenever φ does not contain x. But Russell showed that
axiom is inconsistent.



A personal story

In about 1969, while I was a graduate student, Ken Kunen went on
the lecture circuit championing a new and powerful axiom of
infinity, which said “there is a non-trivial elementary embedding of
the universe into itself.”

He and others derived more and more consequences from this new
axiom–until one day they derived the strongest possible
consequence, 0 = 1.

So much for the “intuition” that said such an embedding should
exist.



Hilbert’s Tenth problem

◮ A Diophantine equation is an equation between polynomials
(in several variables) with integer coefficients, which is to be
solved in integers.

◮ Hilbert’s tenth problem asks whether there is an algorithm to
determine whether a given Diophantine equation has a
solution or not.



Diophantine predicates

Definition
A Diophantine predicate (on the integers) is one defined by a
formula of the form

P (z) ↔ ∃xA(z, x) where A is quantifier-free.

Such a formula is called a Diophantine formula.

Contrast that with the definition of a Σ0
1 predicate, which has the

same form except that A only has to be a bounded formula, not a
quantifier-free formula. Thus every Diophantine predicate is Σ0

1,
but the converse was for decades an open question.

If every Σ0
1 predicate were Diophantine, then solving the halting

problem can be reduced to solving a Diophantine equation, so
Hilbert’s Tenth would be solved in the negative.



Solution of Hilbert’s Tenth

It is now known that every Σ0
1 predicate is indeed Diophantine.

Here is how that happened:

◮ First, in a series of papers, Davis, Putnam, and Julia Robinson
showed that every Σ0

1 predicate is “exponential Diophantine”,
which is like Diophantine except a symbol for exponentiation
is allowed.

◮ Then Matiyesevich gave a Diophantine definition of the
exponential function, using something in number theory called
Pell’s equation.

◮ The theorem is now called the DPRM theorem:

Theorem (DPRM)

Every Σ0
1 predicate is Diophantine



Implications of DPRM for incompleteness

◮ Even after Cohen’s work, it was still possible to maintain that
the incompleteness theorems are irrelevant at least as far as
number theory goes.

◮ Indeed, the diagonal method produces “artifical” examples
that would not come up in number theory.

◮ It is pretty hard to claim that Diophantine equations are
irrelevant to mathematics.

◮ Therefore the unsolvability of Hilbert’s Tenth is a nail in the
coffin of Hilbert’s idea that we should be able to solve any
problem.



Implications of DPRM for incompleteness

◮ Nevertheless, it is true that the universal Diophantine
equation has more variables, or higher degree, or both, than
equations that have been considered by number theorists.

◮ That is not surprising, given that number theorists have yet
not discovered decision procedures that even cover the class
of equations of the form x3 + y3 + z3 = c. They have enough
to work on without considering more complicated equations.

◮ Perhaps it is like saying that it is irrelevant if you are in prison,
if you do not have the strength to walk to the perimeter wall
anyway. But that is not an encouraging line of thought!



Further implications of DPRM

◮ The proof of DPRM can be formalized in PA.

◮ Therefore every Σ0
1 formula is provably equivalent to a

Diophantine formula.

◮ ConPA is equivalent to the negation of a Σ0
1 formula.

◮ So there is a polynomial f(x) of several variables x that has a
solution in integers if and only if PA ⊢ 0 = 1.

◮ The arithmetical relations specified in the polynomial encode
the rules of proof of PA!



Unprovable theorems about Diophantine equations

◮ From the formalized version of DPRM, we see that there are
many true but unprovable formulas of the form ∀x f(x) 6= 0.

◮ Here, as above, we abuse notation, in that f is allowed to
have positive or negative coefficients. To be more precise, we
should write f(x) 6= g(x), and it requires an exercise to show
that only one such equation is necessary.

◮ There is a Diophantine equation whose non-solvability
expresses the consistency of PA.

◮ There is another Diophantine equation whose non-solvability
expresses the consistency of Z2, and yet another for ZFC.

◮ Nevertheless, mathematicians in the last stages of denial can
still maintain that such Diophantine equations are rare and
would never come up naturally. (But wasn’t it a fairly natural
way that they did come up?)



Dependence of the incompleteness theorems on the

axiomatization of T

Here we point out an obvious, but philosophically interesting,
consequence of the incompleteness theorems.

Theorem
There is a formula A of one free variable m such that, for any

consistent recursively enumerable theory T , ConT is expressed by

A[m := ē], where e is an index of a Turing machine that

enumerates the axioms of T .

Proof The function PrfT (k, x) can be written as a Σ0
1 formula with

a free variable m as in the theorem, since the formula that
expresses “y is the Gödel number of a axiom of T” has the form

∃x, k (T(m,x, k) ∧ U(k) = y).

Then we can take

A(m) := ¬∃k PrfT (k, p0 = 1q).

That completes the proof.



A two-player game

◮ Player I proposes axioms T for mathematics.

◮ Player II responds, “OK, if T is consistent then here is a true
theorem it does not prove.”

◮ Player I then has to give new axioms (extending T ) that do
prove this new theorem.

◮ The point of the theorem is the Player II’s job is trivial: he or
she just keeps producing the same formula, changing only one

number in it.

◮ Player I’s job, on the other hand, is very difficult, and after a
while he or she will be stymied, unable to come up with a
really original response.

◮ Player I can stall, by just returning at each stage the new
“axiom” from Player II’s move, but this strategy will only earn
ridicule.



A more mathematical-sounding two-player game

Using the DPRM theorem, we can make those results sound less
“logical” and more “mathematical.”

Theorem
There is a fixed polynomial equation f(e,x) = g(e,x) in several

variables x, such that for any consistent recursively enumerable

theory T , there is an e such that

∀x (F (ē,x) 6= G(ē,x))

is true, but not provable in T .



Proof of the theorem

As in the proof of the previous theorem, the formula PrfT (k, x) can
be written as a Σ0

1 formula with free variable m for the index of a
function enumerating the axioms of T . By the (formalized) DPRM
theorem, every Σ0

1 formula is provably equivalent to a Diophantine
formula. Hence there are polynomials F and G such that

PrfT (k, p0 = 1q) ≡ ∃y (F (m,k,y) = g(m,k,y)).

Now let x be the list of variables k,y, and let e be the index of a
Turing machine that enumerates the axioms of T . Then

T ⊢ ConT ≡ ∀x, (F (ē,x) 6= G(ē, x)).

That completes the proof of the theorem.



Revised two-player game

◮ Player I proposes axioms T for mathematics.

◮ Player II produces a Diophantine equation such that, if T is
consistent, the equation has no solution, but that is not
provable in T .

◮ Moreover, Player II does not think long for each move, as all
he or she needs to do is change one number (albeit possibly in
several places) in the equation.

◮ Player I will surely give up after a few turns, or be reduced to
a ridiculous stalling strategy.



The Finite Ramsey Theorem

Another line of work after the incompleteness theorems has been
to find explicit problems in combinatorics that “might have come
up naturally”, and prove that they are true but unprovable in
various theories. The first such result was due to Paris-Harrington.
They considered the “finite Ramsey theorem”, which had come up
naturally in combinatorics.

Theorem (Finite Ramsey Theorem)

For any positive integers n, k,m we can find N with the following

property: if we color each of the n-element subsets of

S = {1, 2, 3, . . . , N} with one of k colors, then we can find a

subset Y of S with at least m elements, such that all n-element

subsets of Y have the same color.

The Finite Ramsey Theorem can be stated and proved in PA.
(Finite subsets can be coded as integers, and the proof goes by
induction.)



Paris-Harrington

◮ Paris and Harrington modified the theorem to the “extended
finite Ramsey theorem” by adding the further condition, “and
the number of elements of Y is at least the smallest element
of Y .”

◮ Here is the theorem, with the added condition in red:

Theorem (Extended Finite Ramsey Theorem)

For any positive integers n, k,m we can find N with the following

property: if we color each of the n-element subsets of

S = {1, 2, 3, . . . , N} with one of k colors, then we can find a

subset Y of S with at least m elements, such that all n-element

subsets of Y have the same color, and the number of elements of

Y is at least the smallest element of Y .



Extended Ramsey is not provable in PA

◮ These theorems are related to the function that gets the
smallest possible N from n, k, and m; that function grows a
lot faster with the extra condition.

◮ Paris and Harrington showed that in fact, it grows faster than
any function that is provably total in PA.

◮ It follows that the extended Ramsey theorem is not provable
in PA.

◮ So here is a theorem that “could have come up naturally”,
even if it actually did not.



Summary of today’s discussion of incompleteness
◮ You can’t escape the fact: axiomatic systems are inadequate

to establish mathematical truth beyond a limited domain.
◮ You can’t escape by adding more axioms; not even a

transfinite progression of stronger and stronger theories helps.
◮ Famous and important problems in set theory have been

shown unprovable in all known systems, so specific problems
stare us in the face as more or less absolutely unsolvable, in
spite of the fact that theoretically Gödel’s theorem only
applies to a fixed formal system.

◮ The realm of unsolvability certainly extends into the theory of
Diophantine equations, by the DPRM theorem. However, as
yet no specific previously-considered Diophantine equation has
been shown to be unsolvable by a proof that can’t be
formalized in PA.

◮ Combinatorics is not safe either.
◮ Finally, Chaitin’s theory of algorithmic randomness has shown

that, beyond a “set of measure zero”, mathematical truth
necessarily looks to us humans like the toss of a die.


