
Computability and Logic, Phil. 152

◮ Computability, especially the limits thereof.

◮ Logic, especially, the limits thereof.

◮ Famous results on uncomputability and unprovability.

◮ Twice-weekly homework, please plan to work hard on it.

◮ Mathematical logic is not and cannot be a spectator sport.

◮ Final exam, but homework will count 80%

◮ Office hours 90-92E by appointment T-Th. 2 pm and 10 am
are good times.



Textbook Details

◮ Textbook: Kleene’s Introduction to Metamathematics.

◮ Ishi Press paperback edition has a foreword by Prof. Beeson.

◮ Foreword also available on Web, so any edition of Kleene is
OK.

◮ Title is important as Kleene has another book that is not the
right one.



Plan of the introduction

◮ Important ideas from the history of logic

◮ Some important people

◮ In your homework, you’ll look many of these people up in
Wikipedia, and identify the title and date of their most
important publication.

◮ You’ll also read the first part of Kleene.



Euclid: Father of the axiomatic method

◮ Euclid was Greek, but he lived and worked in Alexandria,
Egypt, which was an important center of Greek intellectual
life.

◮ The Museum was perhaps the first government-financed
research institute.

◮ Euclid’s Elements were a textbook summarizing the
geometrical knowledge of the time.

◮ Euclid may have been the first to arrange the material in a
deductive sequence

◮ Euclid starts from five “Postulates” and five “Common
Notions”, as well as a longer list of “Definitions.”

◮ Every “Proposition” is (supposed to be) proved by logical
reasoning from the postulates, common notions, and previous
propositions.

◮ That is the “axiomatic method”, which nowadays is employed
in all of mathematics.



Euclid in education

◮ Until the early twentieth century, every educated person
studied Euclid.

◮ Nowadays, some version of geometry is taught to the entire
population, but not Euclid. The axiomatic method is no
longer taught.

◮ You should make an acquaintance with Euclid part of your
“liberal education.”

◮ Consider buying the Green Lion Press edition, which is
inexpensive and gives only Euclid, without the extensive
commentary of other editions. This is just an informal,
personal, recommendation: Euclid is only marginally and
historically relevant to this course and will probably not be
mentioned after today.



Euclid’s Definitions

Here are the first three of them:

◮ A point is that which has no part.

◮ A line is breadthless width.

◮ A straight line is a line which lies evenly with the points on
itself.

Euclid realized that you have to start somewhere, and you should
isolate the fundamental concepts you are going to reason about.

◮ The modern approach would be to take the fundamental
concepts as undefined, and view these “definitions” as
informal explanations of an “intended interpretation” of the
language.

◮ This important shift of viewpoint took place only in the
period 1870-1899.



Euclid’s postulates

◮ To draw a straight line from any point to any point.

◮ To produce a finite straight line continuously in a straight line.

◮ To describe a circle with any centre and distance.

◮ All right angles are equal to one another.

◮ If a straight line falling on two straight lines makes the interior
angles on the same side less than two right angles, the two
straight lines, if produced indefinitely, meet on that side on
which are angles less than two right angles.



Euclid’s Postulate 5

Line pq falls on straight lines M and L making angles on the right
side less than two right angles. The point indicated by the open
circle is asserted to exist.
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Line K can always be constructed parallel to L so the important
part about Euclid 5 is that any other line through p has to meet L.



Doubts about Euclid 5

It was very early felt that Euclid 5 might not quite deserve the
status of a “postulate.”

◮ It seems less fundamental

◮ The meeting point might be very far away, so we can’t just
“see it in front of our faces”.

◮ It would nicer to have a proof of Euclid 5 and not have to
assume it.

◮ Or at least to replace it with something that seems more
fundamental



Then millennia went by . . .

◮ The library at Alexandria was burned three times under
dramatic circumstances (look it up!)

◮ Government support dried up, and the Empire itself fell

◮ Manuscripts made their way to India, including Euclid’s
Elements, but not including his book Porisms (“theorems”),
which was irretrievably lost.

◮ The monsoon winds were known and in the spring a large fleet
sailed from the Red Sea area for India, returning in the fall.
This commerce carried Euclid, too.

◮ Euclid’s Elements found its way to Arabia and Persia, and
then with the Muslim conquest of Spain, back to Europe, just
as the printing press was invented.

◮ Euclid was printed soon after the Bible, in Latin translated
from Persian translated from Greek.



Renewed attention to Euclid followed

◮ People still considered Euclid to be about actual space

◮ Even though “no part” and “breadthless length” are clearly
not part of experience, they were considered as an abstraction

of experience. There was just one possible notion of point,
and one possible notion of line, and one possible notion of
plane.

◮ A statement like Euclid 5, therefore, had to be true or false,
and it was the job of the geometer to establish its truth on a
sound logical basis, preferably from a simpler, more obvious
axiom.



Failed attempts to prove Euclid 5

People tried to prove Euclid 5 by reductio, without success: Failed
attempts were published by

◮ Simplicius (Byzantine, sixth century)

◮ al-Jawhari (Persian, ninth century)

◮ Nasir Eddin al Tusi

◮ Legendre (1752-1833), who continued to try to prove Euclid 5
until the year of his death, when he published a collection of
his failed attempts, one of which repeated the erroneous
assumption made by the above three.

◮ Lambert (whose wrong proof was only published
posthumously)

◮ A Ph. D. thesis in 1763 found flaws in 28 different alleged
proofs of Euclid 5.



An attempt to derive Euclid 5 from something simpler

Clairaut (1743) derived Euclid 5 from “rectangles exist”, which has
the advantage over Euclid 5 that one (thinks one) can see a
rectangle “before the eyes”, unlike the distant possible intersection
point of the lines in Euclid 5.



Non-Euclidean geometry
The method of reductio ad absurdum, or for short just reductio,
refers to proof by contradiction. Girolamo Sachheri tried to prove
Euclid 5 this way.

◮ He made long deductions and was in some sense the creator
of non-Euclidean geometry.

◮ But he did not, apparently, understand what he had done, i.e.,
he continued to believe that more of these deductions would
eventually lead to a contradiction.

◮ He published his work, saying that it “vindicated Euclid”
because the theorem that the angle sum of a triangle could be
less than two right angles is “repugnant to the nature of the
straight line.”

◮ He died a month after publication.

◮ For the history of logic, the important point is that Sachheri,
and everyone else, still believed geometry was about the one
true universe, the space we live in, and logical reasoning just a
tool for uncovering truths about that space.



Bolyai
Janos Bolyai also tried to prove Euclid 5 by reductio. His father,
also a mathematician, tried to warn him:

You must not attempt this approach to parallels. I know

this way to its very end. I have traversed this bottomless

night, which extinguished all light and joy of my life. I

entreat you, leave the science of parallels alone . . ..

I have traveled past all reefs of this infernal Dead Sea

and have always come back with broken mast and torn

sail. The ruin of my disposition and my fall date back to

this time.

But Bolyai the younger was not deterred, and was perhaps the first
to perceive the consistency of the negation of Euclid 5:

Out of nothing I have created a strange new universe. All

that I have sent you previously is like a house of cards in

comparison with a tower.

We are skipping over the stories of Bolyai, Gauss, and Lobachevsky
here to keep on track with the history of logic.



Non-Euclidean Geometry

The modern point of view is that both Euclid 5 and its negation
are consistent with Euclid’s first four postulates. This can be
shown by exhibiting a model that satisfies Euclid 1-4 but not
Euclid 5. The modern point of view is that both Euclid 5 and its
negation are consistent with Euclid’s first four postulates.

The picture shows the Poincaré model, in which lines are circular
arcs meeting the unit circle at right angles (including diameters of
the unit circle), and distance is defined by a certain formula so that
the boundary is infinitely far from any interior point.
Credit for the first construction of such a model goes to Beltrami
(1868). He was the first to really know that Bolyai’s “strange new
universe” really exists.



Henri Poincaré (1854–1912)



Geometry was the mother of logic

◮ Beltrami’s result was the first “unprovability theorem” in
history.

◮ It was, in its time, as controversial as Gödel’s theorem in the
1930s.

◮ In the 1870s, certain Italian and German geometers began to
write down proofs with a logical precision hitherto not
achieved. (Pasch, Pieri, Veronese for example).

◮ Guiseppe Peano, whose axioms for number theory are famous,
and will be a central tool in this course, invented the logical
notation that is used today, I believe strongly influenced by his
colleagues who worked out the details of geometry very
carefully.



Cantor and the diagonal method

◮ Not every strand in the history of logic came from geometry.
Georg Cantor is of interest to us because of his diagonal

method, invented in about 1880. Probably you are familiar
with his proof that the real numbers in [0, 1] form an
uncountable set, but on the next slide we will review it.

◮ The diagonal method lies at the heart of the uncomputability
and unprovability results of Turing and Gödel that are the
main content of this course.



Cantor’s proof

Suppose we could list the numbers in [0, 1] as s1, s2, . . .. Expand
each one as an infinite repeating binary expansion (possibly ending
with all 0s; but we do not allow expansions ending in all 1s:

Then define the “diagonal number” s so that it differs from si in
the j-th decimal place. Then s does not occur in the list s1, s2, . . .,
because it differs from sj in the j-th decimal place.



Frege and Quantifiers

As you learned in your first logic course, modern logicians freely
use the “quantifiers” ∀ and ∃.

◮ It may surprise you to learn that these concepts were not used
until the very end of the nineteenth century.

◮ There is nothing like a quantifier in Euclid or Aristotle.

◮ They were invented by Frege, but he had an awkward
notation that nobody else used.

◮ Others used (x)A(x) for ∀xA(x), until Kleene’s book that is
the textbook for this course!

◮ Mathematicians still do not make much use of quantifiers and
do not follow the syntax that logicians use.



Skolem functions

◮ Skolem showed using “Skolem functions” that quantifiers can
be eliminated if you are willing to introduce new function
symbols. That technique was one key to Gödel’s completeness
theorem.

◮ Let’s review that. Suppose you have an axiom about addition

∀x∃y (x + y = 0).

Then you could introduce a symbol for the additive inverse,
say −x, with the axiom

∀x(x + (−x) = 0).

◮ This axiom could replace the one containing ∃, and exactly
the same theorems in the language without the new symbol
will be provable.

◮ We say that the new theory is “conservative over” or is a
“conservative extension of” the old theory.



Skolem: Father of model theory
Skolem proved the L owenheim-Skolem theorem in 1920. (See the
Wikipedia article for the discussion of whether Löwenheim proved
it in 1915 or not.) Skolem looked at it model-theoretically; proof
theory didn’t exist. He proved that every model of a (countable)
theory T in a first-order language has a countable submodel. Let’s
review the proof.

◮ First introduce Skolem functions. Then you have a theory
with quantifier-free axioms (and a larger language), such that
every model of the new theory is one of the old theory too,
and vice-versa (using the axiom of choice).

◮ Now start with interpretations of the constants, and close up
under your Skolem functions.

◮ Specifically, let B0 contain the interpretations of the
constants, and let Bn+1 be Bn together with all values of
Skolem functions on elements of Bn. That is countably many
elements altogether; let the countable model B be the union.

◮ Since T is quantifier-free, B satisfies the axioms of T .



David Hilbert (1862–1943)

You’ll see in the Wikipedia article the ubiquitous picture of Hilbert
in his Panama hat, so I thought I would give you a less common
picture here.



Hilbert and the Axiomatic Method

In 1899 Hilbert published a book Grundlagen der Geometrie,
reporting on two decades of work. Hilbert tried to repair the
defects that had been discovered in Euclid’s reasoning.

◮ Like Euclid, he used much work done by others.

◮ In particular Pasch was the first to introduce (1872) an
important axiom that Euclid forgot.

◮ Hilbert’s important contribution was the use of the axiomatic
method. He said all the reasoning had to be correct, if
throughout the work, you replace “point”, “line”, and “plane”
by “table”, “chair”, and “beer mug.”

◮ In other words, the reasoning must not refer to the meaning
of the terms, but only to the assumptions and previous
deductions and definitions.

◮ In today’s terminology: the syntax must not depend on the
semantics.



Importance of the axiomatic method

For mathematics this has great importance, as once a theory is
developed this way, it may have many models.

◮ In these last decades of the nineteenth century, “abstract
algebra” also developed, using the axiomatic method.

◮ Hilbert was one of the major developers of that field too.

◮ An understanding of the axiomatic method is fundamental in
modern logic.

◮ Even physics works this way, since at least 1915. There are
many “models” of Einstein’s theory of general relativity, i.e.,
different possible solutions of his equations.

◮ Gödel even invented such a model in which the universe
rotates and time travel is possible.



Friedrich Ludwig Gottlob Frege (1848-1925)



Frege and the comprehension axiom
Frege finished his masterpiece (whose name you will find as part of
your homework), and sent a copy to Bertrand Russell in 1903.
Russell found a contradiction in Frege’s axioms!
Today that contradiction is known as Russell’s paradox, and is
usually thought of as a contradiction in set theory, although Frege
spoke not about sets but about “concepts”.

◮ Intuitively a concept, or predicate, is something that is true or
false of any object.

◮ In set-theoretical notation, b ∈ X means b falls under the
concept X, or belongs to the set X.

◮ This idea justifies the comprehension axiom:

∃X∀z (z ∈ X ↔ φ(z))

for each formula φ not containing X.

◮ It’s customary to use a Skolem function for X, written

X = {z : φ(z)}.



Russell’s Paradox

Russell pointed out (by return mail) that

R = {x : x 6∈ x}

has, in contemporary terminology, serious issues.

◮ Namely, it leads a contradiction as soon as we ask whether
R ∈ R or not.

Russell had Volume I of Frege’s work. His letter reached Frege as
Volume II was about to be printed. Frege added an appendix
saying this:

Hardly anything more unfortunate can befall a scientific

writer than to have one of the foundations of his edifice

shaken after the work is finished. This was the position I

was placed in by a letter of Mr. Bertrand Russell, just

when the printing of this volume was nearing its

completion.



Russell and Whitehead

The situation appeared urgent to both Frege and Russell. Frege
had no idea what to do about it. Russell consulted with his friend
Alfred North Whitehead. They spent a dozen or so years
developing axioms which they hoped would achieve these aims:

◮ The axioms should be strong enough to develop all of
mathematics

◮ They should be free of contradictions

◮ Mathematics (including the numbers) would be defined in
terms of logic, rather than the other way around. This
philosophy is called “logicism.”

They eventually published three volumes of dense, highly symbolic
material, called Principia Mathematica, that are rarely read these
days. It develops a “theory of types”, in which one imagines sets of
objects, sets of sets of objects, sets of those sets, and so on, in
many “levels”–transfinitely many levels, in fact.



The trouble with Principia

◮ Each set has a certain level, and you use different variables for
each level.

◮ So {x : φ(x)} has one level higher than the x in φ(x).

◮ Thus you can never form the paradoxical set R.

◮ There were, however, difficulties. For example, with this
schema there will be real numbers of arbitrarily high level. So
how can we ever form the set of all real numbers?

◮ We need to assume that all the real numbers will come in by
some level. That was a consequence of the “axiom of
reducibility” that Russell and Whitehead introduced.

◮ But, like Euclid 5, it was not considered evident enough to be
an axiom!



The importance of Principia

Principia Mathematica was enormously influential, because it set
the gold standard for formal logic.

◮ It showed by example what a formal system is, and what a
formal proof is.

◮ Until then, these concepts had not been understood.

◮ Even by Hilbert, whose 1899 book on the Foundations of
Geometry we have already mentioned.

◮ This example helped lead logicians to formulate the general
concepts of “proof” and “theory” and “first-order language”,
even though Principia was not itself first-order.

◮ For example, when Gödel published the incompleteness
theorem in 1931, it referred to unprovability in the system of
PM, as the general concept of “theory” was not yet available.



Brouwer: Father of intuitionism

Another response to Russell’s paradox came from L. E. J. Brouwer,
a Dutch mathematician who had made a name for himself by
proving several important theorems in topology. After doing so, he
returned to the philosophical interests of his thesis, and founded
the philosophy of “intuitionism”, according to which

◮ Mathematics is based on mental constructions

◮ Symbols are used only as a communication tool, to enable you
to make the mental constructions that I instruct you to make,
and vice-versa.

◮ The rules of logic only reflect regularities in these
constructions. They are more like observations than natural
laws.

◮ Thus the formulas of logic or mathematics only summarize or
describe constructions.



Intuitionistic logic

◮ In particular, if we prove ∃xφ(x), then we should provide a
way to construct such an x. It isn’t legitimate, in general, just
to derive a contradiction from assuming no such x exists.
Such a construction is of course some construction, but it’s
summarized by saying

¬¬∃xφ(x)

which is weaker than ∃xφ(x).

◮ Brouwer himself had a low opinion of formal logic, but his
student Heyting wrote down laws for intuitionistic logic.

◮ Brouwer strongly criticized the unrestricted use of the law of
the excluded middle, which he claimed was unjustified. The
reason is that A ∨ B is equivalent to asserting that there is an
integer x such that if x = 0 then A, and if x 6= 0 then B. But
if A is some unsolved problem and B is ¬A then we have no
idea how to construct x, so we are not entitled to assert
A ∨ ¬A.



Hilbert: Father of proof theory
Hilbert’s reaction to Russell’s paradox and the criticisms of
Brouwer was to formulate a plan, known as “Hilbert’s program”,
to settle these difficulties once and for all. The plan was this:

◮ Exhibit a formal theory in which mathematics can be
formalized, the way mathematicians would like to do it.

◮ That theory might have many objectionable features (strong
axioms, law of the excluded middle, etc.)

◮ But: it would be proved consistent! It would be rigorously
demonstrated that no contradiction could be derived in that
theory!

◮ Moreover, this consistency proof should be carried out by
“finitistic means”, so that nobody could object to the
methods employed in the (small, safe) theory used for the
consistency proof.

Hilbert and his assistants Bernays and Ackermann set out to do
this. Of course, they encountered some difficulties, but in the
process they wrote the first modern textbook on logic.



The Entscheidungsproblem

Hilbert and his co-authors formulated the first-order predicate
calculus FOL, and the notion of a model of a theory, and asked the
fundamental questions about these notions:

◮ is FOL complete? That is, does every consistent theory have a
model?

◮ is FOL decidable? That is, is there an algorithm for deciding if
a given formula is provable in FOL?

The second question was especially difficult, as the notion of
“algorithm” had not yet been precisely defined, and the diagonal
method appeared to be a serious obstacle to defining it.

◮ Gödel solved the first one in 1931 with his completeness
theorem.

◮ Turing solve the second one in 1936, with his Turing machines.



The 1930s were the golden years of logic

◮ Turing invented Turing machines, solved the
Entscheidungsproblem and proved that the halting problem is
recursively unsolvable.

◮ Gödel proved the first incompleteness theorem: the system of
Principia, if not contradictory, leaves some true theorems
unprovable.

◮ Gödel proved the second incompleteness theorem: No
sufficiently strong consistent formal theory can prove its own
consistency. This was the death knell for Hilbert’s program.

◮ Gödel developed the theory of general recursive functions

◮ Kleene developed the theory of partial recursive functions

◮ Church developed the λ-calculus

◮ These different notions of computability were shown to be
equivalent.

◮ These results will be the (main) subject matter of this course



Kurt Gödel, age 20


