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Logic is the theory of theories

◮ Therefore one should first have some familiarity with some
particular theories.

◮ Just as you would not start studying zoology without being
familiar with a few examples of animals.



Abstract Algebra

Sometime in the nineteenth century, names were given to the
following laws of arithmetic and algebra:

◮ Associative law of multiplication: (ab)c = a(bc).

◮ Associative law of addition: (a + b) + c = a + (b + c).

◮ Commutative law of multiplication: ab = ba.

◮ Commutative law of addition: a + b = b + a.

◮ Additive identity: x + 0 = 0 + x = x.

◮ Additive inverses: x + (−x) = 0.

◮ Multiplicative identity: x · 1 = 1 · x = 1.

◮ Multiplicative inverses: x(x−1) = x−1x = 1, if x 6= 0.

◮ Left distributive law: a(b + c) = ab + ac.

◮ Right distributive law: (a + b)c = ac + bc.



Many systems satisfy some of these laws

◮ Rational numbers Q

◮ Real numbers R

◮ Integers Z satisfy some but not all of those laws

◮ Complex numbers C

◮ Numbers of the form a + b
√

3 for a and b in Q.

◮ Integers mod p, Zp, for p a prime.

In class I will go over the proofs of some of the laws for some of
these examples.



Permutations

Not every interesting example has both addition and
multiplication; and in some cases, an operation that is not really
addition or multiplication still satisfies some of those laws:
The permutations on a set of n “letters” is called Sn. The
operation is composition (performing one permutation after
another). Thus στ is the result of first doing σ, then doing τ . In
class, notation for permutations will be illustrated. The
permutations satisfy

◮ associativity

◮ identity

◮ inverses exist

But they do not satisfy commutativity.



Other examples

◮ The rotations of the plane, under the operation of
composition, satisfy the same three laws as the permutations
do. They also satisfy commutativity.

◮ The distance-preserving maps of the plane R2 to itself, under
the operation of composition, also satisfy those three laws.
Do they satisfy commutativity?

◮ The rotations of 3-space R3 satisfy those three laws. Do they
satisfy commutativity?



Group theory

Definition: A group is a set X, together with a binary operation
on X that is associative, has an identity, which we call e, and has
inverses. We write x · y for the operation, without assuming that it
means multiplication. That is, it satisfies these three laws:

x · (y · z) = (x · y) · z
x · e = x ∧ e · x = x

∀x∃y (x · y = e ∧ y · x = e)

With this terminology, we can say that the usual number systems

◮ Form a group under addition, with identity element 0

◮ The nonzero numbers form a group under multiplication, with
identity element 1

That captures all the laws we mentioned above, except in addition
the distributive law links addition and multiplication.



Notation for groups

◮ A mathematician will say a group is “written additively” if the
symbol + is used for the operation, and “written
multiplicatively” if the symbol ·, or no symbol at all, is used
for the operation.

◮ Notation for inverses varies accordingly. The use of x−1 does
not imply there is a more general exponentiation operation.

◮ The syntax of first-order logic may officially require prefix
notation. Then, with f for the operation, the associativity law
looks like this:

f(f(a, b), c) = f(a, f(b, c)).

This is almost never written. People use the more familiar
“infix” notation.

◮ Occasionally one sees Polish notation: + + abc = +a + bc or
“reverse Polish notation”: ab + c+ = abc + +, both of which
have the advantage of not needing parenthesis.

◮ We say “X forms a group under +” instead of the more
precise “(X,+) is a group.”



Groups in FOL

◮ Using a unary function symbol for “inverse”, and a constant
for identity, the axioms will be quantifier-free. In particular
x · i(x) = e instead of ∀x∃y (x · y = e).

◮ Often we refer to “the group G” instead of “the group (G, ·)”
or “the group (G,+)”, if the operation is clear from the
context.

◮ We almost never mention the identity symbol or a symbol for
inverse explicitly but technically a group is a structure
(G, ·, e, i) (assuming we have chosen that language for our
axioms).



Some illustrative examples

The general notion of submodel that you learned in your logic
course specializes to the older notion of subgroup.

◮ In class we will examine examples of subgroups.

◮ Starting with the two elements 0, 1, what subgroup of (R,+)
is generated by the Löwenheim-Skolem process? (Technicall,
what subgroup of (R,+, 0,−)?)

◮ Starting with the two elements 1, 2, what subgroup of
(R − {0}, ·) is generated by the Löwenheim-Skolem process?
(Again, technically, what subgroup of

(R, ·, 1, i)

? where i is for multiplicative inverse.)

◮ (Using the notation x−1, it is hard to name the function
symbol itself!)



Further illustrative examples

◮ An element in a group is of order n (for a fixed integer n) if
xn = e, and n is the least such integer.

◮ The group itself is of order n if it has n elements.

The following examples are intended to refresh your memory about
the compactness and completeness theorems you learned in your
first logic course. These will be explained in class.

◮ Give a theory whose models are exactly the groups of order
three.

◮ Show that if a sentence φ in group theory is true in groups of
arbitrarily large order, then it is true in some infinite group.

◮ Is it possible to give a sentence φ in group theory that is true
only in infinite groups?



Field theory

A field is a set X with two binary operations + and ·, such that

◮ X is a group under +, with identity element 0, and

◮ X − {0} is a group under ·, and

◮ The distributive laws hold: a(b + c) = ab + ac and
(a + b)c = ac + bc.

◮ Both commutative laws hold: a + b = b + a and ab = ba.

Now the notion of “submodel” specializes to “subfield”, a notion
that is very important in number theory.



Ring theory

A ring is like a field, but two axioms about multiplication are
dropped:

◮ multiplicative inverses are not required (but their existence is
not denied either).

◮ multiplication does not have to be commutative (but it might
be).

Thus Z is a ring, but not a field.
Technically, (Z,+, ·, 0, 1) is a ring but not a field.
The n × n matrices (for a fixed n such as 2 or 3) with coefficients
in a given field (such as R) form a non-commutative ring. (If you
do not know how to multiply matrices, that’s not important in this
logic course; it’s just an example.)



Vector Spaces

A vector space is an (additively-written) group (the “vectors”),
together with a field (the “scalars”) and an operation of “scalar
multiplication” that takes a vector and a scalar and produces a
vector.

◮ The operation of scalar multiplication satisfies these laws:

a(u + v) = au + av

(a + b)u = au + bu

◮ for example, the vectors could be elements of R3 and the
scalars just real numbers.

◮ But also, the vectors could be functions from R to R, or other
more complicated things.

◮ How do we formalize this in FOL? Answer, we use two “sorts”
or two unary predicates. This will be elaborated in class.



Abstract Algebra

That is the study of groups, rings, fields, and vector spaces.

◮ Usually in the training of mathematicians, the year after
calculus is devoted to the study of these structures. They
have many interesting and useful properties and are
fundamental to the rest of mathematics.

◮ Formulating the notions of group, field, and vector space was
a big advance in mathematics, because:

◮ it allowed proving things once in the most general context,
instead of multiple times; and

◮ it allowed people to recognize familiar axioms in new
situations. As soon as you can recognize that some operation
and set form a group, then immediately you know a lot about
the situation.

◮ It’s the very essence of the usefulness of these notions that
these axioms have many models. That’s the driving idea of
these axiomatizations.


