
Lecture 5: The Halting Problem

Michael Beeson



Historical situation in 1930

◮ The diagonal method appears to offer a way to extend just
about any definition of “computable.”

◮ It appeared in the 1920s that it might even not be possible to
define “computable” in a precise way.

◮ But n the 1930s it was realized that the way around this
difficulty was to define partial computable functions: that is,
to consider functions whose domain is only a subset of the
natural numbers, not the entire set of natural numbers.



Notation f(x) ∼= g(x)

When we write f(x) ∼= g(x), we mean that if either of f(x) or
g(x) is defined, then the other is also, and the values are equal.

By contrast, f(x) = g(x) means both are defined, and they are
equal.



Unbounded search

The easiest way to introduce partial computable functions is just
to add “unbounded search” to the primitive recursive functions.
This is traditionally done by introducing the “µ operator” or
“least-number” operator. Assuming P (x, y) is total, i.e. defined
for all x, y, we define

µxP (x, y) =

{

the least x such that P (x, y) if there is one

undefined otherwise

Here y can be a list of variables, and x does not have to be the
first variable of P as shown.



µ-recursive functions

More generally, we do not need P (x, y) to be total. If f(x, y) is a
partial function, then we define

µx(f(x, y) = 0) ∼=











the least x such that f(x, y) = 0

and ∀z < x(f(z, y) is defined

undefined if there is no such x

We will later see that in fact this gets us no more functions than
when we require P to be total, and moreover, only one search is
enough. But in the definition, we allow the more general form:

Definition
f is µ-recursive if either f is primitive recursive, or
f(x, y) ∼= µx(f(x, y) = 0) where f is partial recursive.



Partial recursive functions

We would call these functions “partial recursive” except that this
phrase is defined in Kleene to mean an equation defined by some
recursion equations. We are not studying Kleene’s notion of
recursion equations in this course, and the functions so defined
turn out to be the same as the µ-recursive functions. The
nomenclature “µ-recursive” is not standard, so we will often, by
force of habit, use the standard phrase “partial recursive” to refer
to the µ-recursive functions.



Using partial functions blocks diagonalization

We can assign indices to the µ-recursive functions as we did for the
primitive recursive functions, using 〈6, n, . . .〉 for the index of a
function defined using the least-number operator. Then we can
diagonalize, but we no longer get a contradiction, as we shall now
show. Having enumerated the µ-recursive functions as φ1, φ2, . . .

we consider f defined by f(n) = φn(n) + 1. Then f must be φm

for some m, and we consider f(m), which if defined is equal to
φm(m) + 1 = f(m) + 1. But all we get is f(m) ∼= f(m) + 1. This
is not a contradiction; it only proves that f(m) is undefined, i.e. m

is not in the domain of f .



So is µ-recursive a good definition of “computable”?

Getting around diagonalization was a big step forwards. One might
conjecture that every computable function is µ-recursive. But
people were quite hesitant to do that, since they had already had a
lot of experience in finding new, complicated but still computable,
functions that went beyond this or that explicit definition of
computability. In the exercises, you will see that certain
generalizations do not actually give more functions.



The Zeitgeist of 1930

In the 1930s, computers did not exist yet, and the idea of
“computer program” did not exist, and the idea of “algorithm”, if
it existed at all, was not commonplace. There are several other
ideas that are commonplace in 2014, that were not well
understood in 1930:

◮ Programs can be regarded as strings (words or finite lists of
characters)

◮ Strings are data; therefore programs can also be data

◮ Characters in an alphabet can be represented by numbers
(their ascii codes)

◮ Numbers can be represented as strings of binary digits

◮ Therefore any string can also be represented as string of
binary digits

◮ Therefore any string can be represented as a (possibly large)
number



Coding plus diagonalization

◮ Those ideas about “coding” things like proofs, machines, and
computations as strings and ultimately as integers, which now
seem obvious, constitute a sizable portion of the technical
work in the original papers of Turing, Church, and Gödel.

◮ They added the method of “diagonalization”, which had
earlier been introduced by Cantor to prove the uncountability
of the reals, and used by Russell to derive his famous paradox.

◮ From coding and diagonalization, the main results of the
subject follow.



The halting problem

◮ The halting problem asks for an algorithm that takes as input
a computer program p and an integer x, and outputs YES or
NO, according to whether program p run on input x

eventually halts (instead of entering an infinite loop, say).

◮ Another version of the halting problem is about programs p

that compute without input, and asks whether there is an
algorithm to decide if such a program halts or not.

◮ Yet another version asks about whether a program p halts on
itself, i.e. whether p halts at input p.



Turing’s famous result

The halting problem is unsolvable: there is no such algorithm. Here
we give a sketch of the proof, as written up by the number theorist
Bjorn Poonen in his paper, Undecidability in Number Theory.

Sketch of proof. Fix an encoding of programs as nonnegative
integers; identify programs with their integer codes. Suppose that
there were an algorithm for deciding when program p halts on
input x. Using this we could build a new program H such that for
any x, H halts on input x if and only if program x does not halt
on input x. Taking x = H, we find a contradiction: H halts on
input H if and only if H does not halt on input H.



More precision needed!

To turn that sketch into a proof we must

◮ define “program” precisely

◮ Assign integer codes to programs

◮ Show that there is a program that computes the result
App(e, x) of applying program (with index) e to input x.



How to achieve the required precision

Today, these things can be done in dozens of different ways, and
many of these different ways are of independent interest.
Historically, the unsolvability of the halting problem was proved
long before the invention of the many programming languages in
use today. Indeed, the bulk of Turing’s work, as well as Church’s,
was to produce a “model of computation”, i.e. an abstract
mathematical notion of computability. Turing’s model was based
on an analysis of mechanical computation, and is called “Turing
machines.” Church’s model is based on an analysis of ways of
defining functions, and is called “λ-calculus”. We will consider
both of these models of computation, but in the twenty-first
century, it makes more sense to start with the well-known modern
programming languages.



Programs as strings

Pick your favorite programming language L. Then programs in L
are strings over the ASCII alphabet (codes 32-127, plus a newline
code, say 10. The precise definition of “program” is given in the
manual for L.
Integer codes for programs are a special case of coding any string
as an integer. Integer codes for strings are obtained by regarding
any string as a number base 2, with eight bits per character. Thus
the string cab is represented by the number obtained by
concatenating the codes of the three characters, which are 99, 97,
and 98, respectively. For technical reasons it may be helpful to
follow the null-terminator convention of adding 8 zero bytes to
mark the end of a string. In binary, 97 is 01100001, so the
numerical code of cab is 01100001011000110110001000000000.



Interpreters

Finally, we need to define App(e, x). The program for App is
known as an “interpreter” for L. It takes a program e (in string
form) and an input x (also in string form) and emulates the
execution of e at input x.
Therefore, to make Poonen’s proof sketch precise, we just need to
pick a language L, and write an interpreter for L in L. It is well
known that interpreters can be written for various languages, but
each one involves some level of technical detail. In the next slide,
we consider the options.



An interpreter for L written in L

One the most popular languages in 2014 is Java. Is there a Java
interpreter written in Java? The “Java virtual machine” (JVM)
presents itself as an obvious candidate. But actually, it works not
on Java programs, but on a compiled version of Java programs
known as “bytecode.” Of course, the JVM, after being written in
Java, is itself compiled into bytecode, and bytecode programs can
also be considered as strings, so the JVM can be considered as an
interpreter for Java bytecode written in Java bytecode. But to use
this to complete our proof of the unsolvability of the halting
problem, we would need to prove the correctness of the JVM, i.e.,
we would have to prove that the JVM’s emulation of any bytecode
program e at input x gives the same output as program e at input
x. Because the Java language is complicated, that would be a
difficult proof indeed. One would probably only be satisfied with a
computer-checked correctness proof. I do not know whether any
JVM has been “formally verified” in this sense.



How about C?

Googling for “C interpreter”, one quickly finds an article in Dr.
Dobb’s Journal with a complete listing for a C interpreter. This is
beautiful and humanly-readable code. I recommend it to any
student who is also a C programmer. It is somewhat surprising
that it is easier to find a C interpreter than a Java interpreter.

But the students of this subject are not all C programmers, so we
will say no more about this.



LISP (List Processing Language)

The most elegant solution is LISP, a computer language widely
used in the early decades of artificial intelligence research. Time
permitting, we may later examine the language of “pure LISP”
because of its connection to Church’s lambda-calculus and to
Chaitin’s work on algorithmic information theory. But for those
with an acquaintance with LISP, let me point out that LISP is the
only major computer language with a built-in interpreter: the EVAL
function of LISP is exactly the App that we need to define. And
every course in LISP includes a chapter on writing EVAL in LISP.

However, in the interest of following the textbook closely, and of
not getting bogged down trying to write (and debug) actual
running programs, we won’t go into LISP now.



A universal µ-recursive function

One way of getting a precise proof of the unsolvability of the
halting problem is to use the µ-recursive functions. In an earlier
slide, we assigned an integer index to each µ-recursive function.
Let φn be the partial recursive function with index n.

Theorem
App(e, x) := φe(x) is a µ-recursive function.

Proof. This is by no means trivial. I do not know a direct proof;
we will derive it later indirectly. The definition of App(e, x) is by a
complicated recursion on e, so the way to try to prove it is to show
that the class of partial recursive functions is closed under arbitrary
recursions. That’s what led Kleene and Gödel to consider systems
of recursion equations as a definition of computation. But we are
going to follow Turing’s approach instead. Eventually, using Turing
machines, we will show that the µ-recursive functions are closed
under arbitrary recursions!



A “universal function” is just an interpreter

In connection with models of computation based on “machines”, it
is traditional to use the terminology “universal machine”
(introduced by Turing) instead of “interpreter”. The idea is that a
universal machine (for a certain class of machines) is capable of
emulating any machine in that class of machines. The classical
case is Turing machines, which we take up in the next lecture.



Models of Computation

Historically, the unsolvability of the halting problem was proved
long before the invention of Java and the other programming
languages in use today. Indeed, the bulk of Turing’s work, as well
as Church’s, was to produce a “model of computation”, i.e. an
abstract mathematical notion of computability sufficient to carry
out the diagonal argument above.
We consider the diagonal argument for the unsolvability of the
halting problem, and try to extract what is essential, without
saying exactly what a “program” is. Whatever programs are, we
assume they can be represented as strings, and they can “request
inputs”, and they can “terminate”. Since programs and data can
both can be considered to be strings, it makes sense to have a
partial operation App that applies program e to input x, where e

and x are both strings.



What is a model of computation?
With so many examples at hand, it’s good to write down what the
essence of the matter is. (That is called the “axiomatic method.”)

We write x for x1, . . . , xn. We assume that there is, for each n, an
application function App(e,x), that applies program e to input x.

◮ The essential point is that App should itself be computable.
◮ We require the existence of an “interpreter” or “universal

function” e such that

App(e, x, y) = App(x, y)

◮ A “model of computation” is determined by some set X,
together with partial operations App (one for each n) from
Xn+1 to X, obeying the law above.

If you want to think more concretely, take X to be the set of
strings over some alphabet Σ, or take X to be the set N of natural
numbers.

Technically, we also need some simpler axioms, but our focus now
is just on the main idea.



Modern examples of models of computation

◮ App(x, y) is the output of the JVM (Java Virtual Machine)
emulating program x at input y, if any. (It is undefined if x is
not a valid Java program, since then input y is never
requested; and it is undefined if x(y) does not terminate.)

◮ App(x, y) is the output of a C interpreter emulating program
x at input y, if any.

◮ App(x, y) is the output of a LISP interpreter evaluating the
S-expression (xy).



Models from the 1930s

The early history of computation theory consisted in the
construction of several different models of these axioms. The
axioms were only formulated later. In 1930, if they had been
formulated, it would have been by no means obvious that there
exists anything satisfying these axioms. The models that were
constructed were

◮ Church’s λ-calculus

◮ Turing machines

◮ Gödel’s equation calculus

Each of these models has a rich historical thread leading into
aspects of modern computer science as well as logic. The
important conclusion that has been drawn is that all these models
of computation are equivalent, in that the same functions are
computable.



Computations

For some of the results about computability, we need more than
just a universal machine (or interpreter). We need to know that
computation proceed in “steps” or “stages.” This is axiomatized
by the “T -predicate” and the “U -function.” The T -predicate
T (e, x, k) means that k encodes a finite number of steps of
computation by program e at input x. In that case U(k) is the
result of the computation. Formally, we require

App(e, x) = y ↔ ∃k (T (e, x, k) ∧ U(k) = y)

When we develop specific models of computation, we will also
demonstrate that they satisfy this axiom. Kleene introduced the
notation T and U for a specific model of computation, but we
retain that terminology here in this axiomatic setting.



The Church-Turing thesis

A function f is said to be “computed by” a program p if, whenever
p is given input x, the program produces output f(x). It is more or
less certain, as we shall eventually show convincingly, that any
function that can be computed by any computer program, written
in any computer language, for any computer, no matter how
powerful, can also be computed by a Turing machine, or
equivalently, is computable in the λ-calculus. Sometimes this is
called the “Church-Turing thesis”. In this form there are today no
dissenters to the Church-Turing thesis.



Related philosophical arguments

Sometimes the phrase “Church-Turing thesis’ refers instead to the
philosophical claim that any function computable by a human
being is computable by a Turing machine. In view of the first
thesis, this is equivalent to the claim that any function computable
by a human is computable by some computer program. There are
some dissenters to this version: these dissenters point to the
possible non-mechanical parts of human brain, be those
quantum-mechanical features, spiritual features, or “mathematical
intuition.” For example, one of these dissenters is the famous
physicist Penrose.



Approaching the homework

The skill to be acquired is to recognize intuitively when a function
(usually the characteristic function of a set or relation) is
computable, and when it is at least not obviously computable.
We will try some examples in class, and more are taken up in the
homework.


