
Lecture 8: Computation by Turing Machines

Michael Beeson



Coding sequences
By definition, Turing machines are finite sequences of instructions,
and instructions are also certain finite sequences. If we want to
code these things as integers, ultimately sequences of integers have
to be coded as integers. Traditionally powers of primes were used.
In Lecture 4, another method, based on ascii codes, was given.
What we need is just this:

There are primitive recursive functions length(x) and x[i]
(primitive recursive in both variables x and i) such that for every
sequence a0, a1, . . . , an−1, there exists an x such that

◮ length(x) = n and
◮ for each j with 0 ≤ j < n we have x[j] = aj .

We will not refer in today’s lecture to any specific implementation
of sequence coding.

But instead of thinking of these methods as “coding” sequences,
we can think of them as the definition of sequences. Thus when
we write (a, b, c) or 〈a, b, c〉, we don’t mean a function or a set, but
an integer.



Turing machines are integers

◮ States are officially integers (perhaps representing the ascii of
string state names)

◮ Symbols are 8-bit integers

◮ R, L, and C are shorthand for 0,1,2 in that order. So they are
integers too.

◮ So, instructions are also integers.

◮ Turing machines are sequences of instructions.

◮ So, Turing machines are integers.

◮ Not just coded by integers. They ARE OFFICIALLY integers.

◮ Of course, we still work with string representations, e.g. to
use the simulator.



Instantaneous tape descriptions

◮ A tape square is a 16-bit integers; the second 8 bits specify a
symbol and the first 8 bits specify a head-present flag

(which tells whether the machine’s head is on that square at
that moment). (Yes, 7 bits are wasted.)

◮ You can think of the head-present flag as the color “red.”

◮ An ITD (instantaneous tape description) is a finite
sequence consisting of one state, followed by a sequence of
tape squares. In practice, exactly one of those tape squares
has a nonzero head-present flag, but that isn’t part of the
definition.

◮ An ITD can be padded to any desired length by appending
more tape squares containing zeroes (blank symbols and zero
head-present flag).

◮ Two ITDs are equivalent if they both can be obtained by
padding a common initial subsequence.



Comparison to Kleene’s textbook

◮ An ITD is similar to a “machine-tape state” in Kleene’s
textbook.

◮ Kleene doesn’t have the head-present flag.

◮ The head-present flag permits us to keep track of the head’s
location while keeping the tape descriptions lined up with the
previous and next step of the computation.

◮ Think of the computation as arranged in a rectangle, with one
step per row, given by its ITD.

◮ Kleene inserts the current state left of the scanned square,
throwing everything off by one, so the rows of the
computation don’t always line up. The head-present flag fixes
that problem.

◮ Kleene uses powers of primes to code the three items: tape
left of the head, current state, tape right of the head. Of
course this coding works too.



Computations, intuitive version

◮ A computation is a sequence of ITDs corresponding to
successive steps by a given Turing machine M .

◮ We write them in rectangular form, one row for each step of
computation.

◮ A column at the left keeps track of the current state.

◮ We still need to make precise the relation that must hold
between two rows of a computation for it to correspond to the
instruction set of that Turing machine.

◮ The first column has to be wide enough to hold a state of M .
That doesn’t matter, officially, since we use sequences of
integers, not just sequences of bytes; it only matters for your
mental picture of a computation.



Notation

◮ If x is an ITD for machine M , then x is (thought of as) a
sequence of integers.

◮ Officially x[0] is the current state. For readability we write
x[0] as x.state.

◮ Then x[1], . . . describes the tape. That sequence is x.tape.

◮ Each member x.tape[i] is a 16-bit integer. The first 8 bits are
the head-present flag and the second 8 bits are the symbol.
For readability we write these as x.tape[i].f lag and
x.tape[i].symbol.

◮ Alternately we could have made x.tape[i] a sequence of length
2, but we did not choose to do that.



An ITD is an integer

◮ An ITD is officially a sequence of integers.

◮ But a sequence of integers is, by definition, an integer.

◮ Thus an ITD is an integer.



The Next relation

This is the relation between two adjacent rows of a computation.

◮ The relation in question does not depend on the whole row,
but only on the squares near the scanned square.

◮ It is enough to consider a small rectangle containing six
squares, the scanned square, the ones to its left and right, and
the three in the next row below those three.

◮ The predicate Next takes a Turing machine e, two states s[0]
and s[1], and six tape squares, which we label t[i, j] for
i = 0, 1, 2 and j = 0, 1.

◮ It will be defined so that it is true if these six tape squares
could describe a portion of a computation by machine e.



Definition of Next

Arguments of Next:

◮ Turing machine e

◮ states s[0] and s[1]

◮ six tape squares t[i, j] for i = 0, 1, 2 and j = 0, 1.

Next checks that the second triple of tape squares can be
obtained from the first triple using one of the instructions in
machine e. Specifically, there is a first instruction in e that
specifies, “when reading t[0][1].symbol in state s[0], write
t[1][1].symbol and move R, L, or C”, t[i, j].f lag is set (nonzero) in
exactly two of the six squares, namely t[0, 1] and one of t[1, j],
where j = 0 if the instruction said move left, j = 1 if it said not to
move, and j = 2 if it said move right.



Partial computations, precisely defined
A partial computation by machine e is a sequence (of length m,
say), of ITDs x[i] all of the same length N (with zero-based
indexing, so the first one is x[0] and the last one is x[N − 1]), such
that

◮ x[0].state = 0 (the start state)

◮ x[0].tape[j].f lag = 1 for exactly one j < N . (The head starts
on square j.)

◮ for each row i < m − 1, and 0 < j < N , if
x[i].tape[j].f lag = 1 then j < N − 1 and Next is true when
evaluated at e, x[i].state, x[i + 1].state, and the six tape
squares x[i].tape[j − 1], x[i.tape[j], x[i].tape[j + 1],
x[i + 1].tape[j − 1], x[i + 1].tape[j], and x[i + 1].tape[j + 1]
(except if j = 0 see next slide).

◮ and x[i + 1].state is the new state dictated by e and
x[i].tape[j].symbol and x[i].state.

◮ and if x[i].tape[j].f lag = 0 then
x[i].tape[j].symbol = x[i + 1].tape[j].symbol.



One-way tape or two-way tape?

◮ We are formalizing a two-way infinite tape, but using a list of
squares indexed starting at zero.

◮ That’s why the head starts in square j, not necessarily square
0.

◮ We make the definition of partial computation provide that if
x[i].tape[0].f lag = 1, then either x[i + 1].tape[0].f lag = 1 or
x[i + 1].tape[1].f lag = 1.

◮ That is, the head did not move left.
◮ In effect that forces the machine to halt if it tries to move left

of square 0.
◮ For any terminating computation, we can choose the initial

square j so that only positive-indexed squares are used.
◮ This is not quite the same as a two-way infinite tape in the

case of divergent computations, but since it agrees on halting
computations, it computes the same functions.

◮ To formalize a one-way infinite tape, require the initial square
to be j = 0 or j = 1; either one works but with subtle
differences.



The T-predicate and U -function

◮ A computation is a partial computation such that final row
represents the machine in a halting configuration, that is, no
instruction of the machine is applicable.

◮ If the only reason for halting was that the next instruction
would have caused the head to move left of square zero, that
doesn’t count as a computation.

◮ T(e, x, k) means e is a Turing machine, and k is a
computation by machine e at input x.

◮ If T(e, x, k), then U(k) is defined to be the (integer coding
the) string remaining on the tape at the end of the
computation starting at the final head location; this is
obtained by stripping out the bit reserved for the head marker.

◮ Using the head location to mark the start of the output means
that if we pad a computation with blanks on the left, the
output doesn’t change.



Kleene Normal-form Theorem

Every Turing computable function has the form

f(x) ∼= U(µkT(e,x, k))

where e is a Turing machine that computes f .

Proof. f(x) is defined if and only if there is some computation by
machine e at input x. If there is such a computation that
computation (regarded as a number) is a k such that T (e,x, k),
and the result U(k) of this computation is the value y = f(x).
That completes the proof.



µ-recursiveness and Turing computability

We showed already that every µ-recursive function is Turing
computable. We would like to prove the converse.

The Kleene normal-form theorem is the key. If we can show that

◮ the T -predicate is primitive recursive

◮ the U -function is primitive recursive

then every Turing computable function is µ-recursive:

f(x) ∼= U(µkT(e,x, k))



Definability of T

◮ Recall from Lecture 4 that every predicate defined by a
bounded arithmetical formula is primitive recursive; more
generally the primitive recursive predicates are closed under
logical operations and bounded quantification.

◮ So we will show that T is definable by using logical operations
and bounded quantification, applied to primitive recursive
predicates.

◮ Then T will be shown to be primitive recursive.

◮ This is a bit technical, but it’s the easiest way to actually
prove everything.



A technical note about sequences

◮ It is tempting to claim that T is definable by a bounded
arithmetic predicate, but we can’t do that without more work.

◮ The issue here is the definability of “sequence numbers”, in
particular the predicate x[i] = j, which we have left
unspecified except to say it is primitive recursive.

◮ Without specifying a particular encoding of sequences, we
can’t say for sure that it is defined by a bounded formula.

◮ That doesn’t actually matter, since what we need is merely
the closure of the primitive recursive predicates under logical
operations and bounded quantification.



Some detailed definitions

◮ Instr(q), “q is a TM instruction”, is defined by

length(q) = 5 ∧ x[1] < 128 ∧ x[3] < 128 ∧ x[5] < 3

◮ e is a Turing machine:

∀i < length(e) Instr(e[i])

◮ Square(p) is defined by

(p[0] = 0 ∨ p[0] = 1) ∧ p[1] < 128

◮ ITD(r) is defined by

∀j < length(r) (j > 0⊃(Square(r[j])))

◮ The definition of Next involved a bounded quantifier over e

to look for an instruction in e of a certain form; so Next is
definable by a bounded arithmetical formula.

◮ Terminal(e, r) says that for all j < length(r), with j > 0,
either r[j].f lag = 0 or no instruction of e begins with state
r[0] and old symbol r[j].symbol



Bounded arithmetical definition of T(e, x, k)

∀i < length(k) (ITD(k[i]) ∧ length(k[i]) = length(k[0])

∧∀i < length(k) − 1∀j < length(k[i]) − 1

(j > 0 ∧ k[i][j].f lag = 1 ⊃

Next(e, k[i, j − 1], k[i, j], k[i, j + 1],

k[i + 1, j − 1], k[i + 1, j], k[1 + 1, j + 1])

∧∀j < length(k[0])(j > 0⊃k[0][j].f lag = 0)

∧k[0][0].f lag = 1

Terminal(e, k[length(k) − 1])



Result-extracting function U is primitive recursive

U(k) has to

◮ extract the last row q = k[length(k)− 1] from the sequence k.

◮ find the head location in that row, i.e. the least j < N such
that k[length(k) − 1, j].f lag = 1.

◮ discard q[0], lots, q[j − 1] and form the string of q[j].symbol,
q[j + 2].symbol, . . ..

◮ return the integer whose binary representation is given as an
ascii string by that sequence.

◮ These steps can be defined by course-of-values recursion

◮ Hence U is primitive recursive.



Recapping

◮ We proved that T(e, x, n) is defined by a bounded arithmetic
formula.

◮ Therefore, it is primitive recursive.

◮ U is also primitive recursive.

◮ Therefore,
φe(x) ∼= U(µkT(e,x, k))

is µ-recursive.

◮ But that is the function computed by the Turing machine e.

◮ Therefore, Turing computable implies µ-recursive.

◮ But we already proved µ-recursive implies Turing computable.

◮ Hence a function is Turing computable if and only if it is
µ-recursive.



A universal Turing machine

A universal Turing machine is a machine M that computes the
function App(e,x), defined to be the output of Turing machine e

at input x.

We can now easily prove that there exists a universal Turing
machine.

Proof. By the normal form theorem, we have

App(e,x) ∼= U(µk (T (e,x, k)))

As we just showed, T and U are primitive recursive. Hence the
right side is µ-recursive. But then, it is Turing computable (with
variable e), so there some Turing machine that computes it. That
is a universal machine.



Turing machines as a model of computation

◮ Thus we have proved rigorously that Turing machines provide
a “model of computation” in the sense that there is an
App(e, x) function.

◮ Moreover, the T-predicate shows that “computations proceed
in stages”. While k officially is a computation by machine e at
input x, it can also be thought of as counting the steps.

◮ “App(e, x) is defined if and only if it is defined in some
number of steps” is one way of looking at the normal form
theorem.



Unsolvability of the halting problem

◮ The predicates “Turing machine e halts at input e” and
“Turing machine e halts at input x” are not Turing
computable.

◮ More formally, the predicate

∃k T(e, x, k)

is not Turing computable.

Proof. We have already shown that this follows from the existence
of App, but we repeat the proof for Turing machines on the next
slide.



Proof of unsolvability of halting problem

If ∃k T(e, x, k) were Turing computable, then so would be

f(x) ∼=

{

0 if ∃k (T(e, x, k) ∧ U(k) = 1)

1 otherwise

Then f is total. Suppose f is computed by Turing machine e.
Then since f is total, there is some k such that T(e, e, k). Then
f(e) = U(k). Hence U(k) cannot be 1, as then f(e) = 0 6= U(k).
Therefore the first case in the definition cannot hold, and f(e)
must be 1. But then there is a computation k showing that
f(e) = 1; and for that k, the first case of the definition will hold
after all, contradiction. That completes the proof.



Towards an explicit universal TM

I do not know of any actual explicitly-constructed universal Turing
machine that one can run in a simulator. All textbooks that I have
seen either ask the student to take the existence of a universal
machine on faith or authority, or they prove its existence by a chain
of “compiling down” from more abstract machines or programming
languages to Turing machines. But those compilers are to my
knowledge never written out as executable computer code, so one
never actually arrives at a specific universal Turing machine. Not
that we will do better here; but let us survey what would be
involved.



Steps to construct a universal Turing machine

◮ Write a program to translate a bounded arithmetic formula to
a primitive recursive definition of its representing program.

◮ Apply that program to get an explicit primitive recursive
definition of the T predicate.

◮ Write a program to translate an explicit primitive recursive
definition of a function into a Turing machine that computes
that function.

◮ Apply that program to get a Turing machine that computes
the T predicate.

◮ Use the TM for the T predicate to obtain a machine that
computes f(e, x) = µk (T(e, x, k))).

◮ Obtain a Turing machine to compute the result-extracting
function U . (Either by direct programming, or by finding a
primitive recursive definition of U and converting that to a
Turing machine.)

◮ Combine U with the previous step to obtain a machine that
computes App(e, x) ∼= U(f(x)). That machine is a universal
Turing machine.



Next time

◮ That still doesn’t show, for example, that Ackermann’s
function, or a Python interpreter, is Turing computable.

◮ Next time, we will prove the “recursion theorem”, showing
that the Turing computable functions are closed under
arbitrary recursions, not just primitive recursions.

◮ That is the convincing argument that this is really the class of
“computable functions”, because interpreters for computer
languages can be written using recursion.

◮ With primitive recursion, we have for-loops. With µ-recursion,
we have (unbounded) while-loops. But can you implement
arbitrary recursion with loops?


