Lecture 9B: The Lambda Calculus

Michael Beeson



Lambda Calculus
There can't be a total App over N. But over some other X7

> Just assume App is total. Amazingly, the axioms of a model
of computation are not inconsistent with this assumption!

» We obtain a system equivalent to the A-calculus introduced
by Church in a 1932 publication (although discovered in 1928
when Church was 25 years old).

» Church use a binary App(x,y) instead of different App
functions for each number of arguments, and took A as
primitive, rather than assuming the existence of S functions
(or A). He did not write App explicitly, but just wrote zy in
place of App(z,vy).

» The main rule in A-calculus is
Az t)u = t[z := ul.

» Lower case A is used in the A-calculus, though technically, it is
close to Kleene's A, in that it leads from indices to indices.



Currying

» In X calculus, officially there is only one binary App, not one
for each number of arguments.

» Functions of several arguments are handled like this: z(y, z) is
defined to be xyz. This is known as “currying”, after
Church’s student Haskell Curry.

» Modulo this essentially trivial difference, the lambda calculus
amounts to assuming the axioms for a model of computation,
and also specifying that App is total.



Models of A-calculus

» It is far from obvious that the A-calculus has any models.

» If this course were longer, three or four lectures would be
devoted to the lambda calculus.

» The point of those lectures would be that these axioms are
consistent. That theorem is hard to prove, but very
interesting.

» lts first proof was purely syntactic.

» Natural models for the lambda calculus were not discovered
until half a century later.

» We won't have time to study these things.



Fixed-point theorem in A-calculus

Theorem (Fixed-point theorem for A-calculus)

In the lambda calculus, for every F' there exists an e such that
e = Fe.

Remark. This theorem is (of course) not true in any model of
computation over N, because the successor function has no fixed
point.

Proof. Let w:= Az F(xx). Let e := ww. Then e is the desired
fixed point:

= (A F(zz))w
= Floww)

That completes the proof.



Discussion of fixed-point theorem

It is probably this proof that inspired both the statement and proof
of Rogers's fixed-point theorem for the Turing-computable
functions. This proof is simpler and more memorable, and given
this proof, it is believable that one might work out Rogers's
theorem.

The fixed-point theorem for lambda calculus might well arouse the
suspicion that lambda-calculus is inconsistent, because the
fixed-point theorem implies that there is no term D in
lambda-calculus such that Dz # x is a theorem (for such a D has
no fixed point). Hence there cannot be a way to construct
definitions by cases in lambda calculus. Nevertheless, these are not
the deal-breaking results they might seem at first.



A-calculus and computability

>

There is a way to define the natural numbers (the “Church
numerals”) in A-calculus.

Using the Church numerals, we can define the concept of
A-definable function from N to N.

The second important theorem about the lambda-calculus is
that Kleene-Turing model of computability is embeddable in
the lambda calculus, i.e., there is an App-preserving map from
the Turing model into (but not onto) any model of the
lambda-calculus.

Every Turing-computable function is defined by a A-term and,
as it turns out, vice-versa.

Thus the A-definable functions turn out to be the same as the
Turing computable functions, which as we have seen are the
same as the partial recursive functions.

The original “Church’s thesis” was that every intuitively
computable function is A-definable.

As a curious historical note, Godel did not believe it until he
learned about Turing machines.



