
Lecture 9: The Recursion Theorem

Michael Beeson



The problem of computing by recursion
◮ We still have not provided completely convincing evidence

that every intuitively computable function is Turing
computable, even though we have proved that the µ-recursive
functions coincide with the Turing computable functions.

◮ For example, what about the Ackermann function?
◮ Another example: we previously showed how to assign indices

to the µ-recursive functions, so that we can write ϕn for the
µ-recursive function with index n. The question arises
whether ϕn(x) is a partial recursive function of both n and x.
If so then the partial recursive functions form a model of
computation.

◮ In an earlier lecture, we had to postpone proving that,
because we do not know a direct proof.

◮ Now, we see that ϕn(x) is partial recursive if and only if it is
Turing computable.

◮ But it is not trivial to write a Turing machine to compute
ϕn(x) (as a function of n as well as x).



λ notation

We need a notation for “as a function of.” Thus f(x, y) can be
considered as a function of x for each fixed y. We write this
function as λx f(x, y). Then we have the basic law that

(λx f(x, y))(u) = f(u, y)

Note that x is bound in the expression λx f(x, y).
We also use the λ-notation for several variables x = x1, . . . , xn.

λx f(x,y)(u) = f(u,y).

The process described by λx is called, in English, “lambda
abstraction” over the variables x.



Example of λ-notation

This notation can bring more precision to the differential calculus,
where the derivative operation really applies to a function. If we
define, for example, f(x) = x2, then the derivative Df is the
function λx 2x.

◮ We have (Df)(u) = 2u, something which is not written in
calculus books.

◮ the expression (df/dx) is usually interpreted as what
technically should be (Df)(x) (which is 2x).

◮ Functions are not the same as numbers. sin is a function,
sin(x) is a number (if x is a number). Thus sin = λx sin(x).



The S1
1 function

As a preliminary to the recursion theorem, we need to discuss the
relationship between functions of n variables, and functions of
m < n variables obtained by fixing some of the n variables. For
example, g(x) = λx f(x, y). The point is that code for computing
g can be found by an algorithm, given code for computing f . This
algorithm is a simple example of a program that treats programs as
data.

◮ The traditional notation for this algorithm is S1
1 , which takes

two arguments.

◮ The first argument is code for f .

◮ The second argument is x.

◮ The output is code for g.



The Sm
n functions

We treat this abstractly, using only the notion of a model of
computation, given by a set X and some partial application
functions App(e,x) on X, where x = x1, . . . , xn.

We need computable functions Sm
n (x) such that for

y = y1, . . . , ym we have

App(Sm
n (e,x), y) = App(e,x,y) (1)

We say e is an “index of f” if f(x) ∼= App(e,x) for all x.

The role of Sm
n can be described this way: Sm, n(e,y) is an index

of λx f(y,x) if e is an index of f .

See Kleene, p. 342, where the Sn
m functions are introduced for a

model of computation that we have not studied, but you can see
that the defining property is the same as here. The notation is due
to Kleene.



Λ notation

◮ Kleene also introduced the Λ-notation, according to which
Λxϕ(y,x) is an index of λxϕ(y,x).

◮ This works if we define Λxϕe(y,x) to be Sm
n (e,y), where e is

an index of ϕ. (See Kleene, p. 344.)

◮ Although the index e of f = ϕe is not mentioned in the
notation Λxf(y,x), the notation without the index is mere
human shorthand. You must have an index in mind.

◮ To clarify the notation: Λxϕe(x, y) is an index of the function
λxϕe(x, y).

◮ ϕe refers either to a particular model of computation (e.g.
Turing machines) or to an abstract model of computation,
depending on the context.



The main property of Λ

Λxϕ(y,x) is an index of λxϕ(y,x).

Therefore

φΛxϕ(y,x)(u) = λxϕ(y,x)(u) = ϕ(y, u)



Sm
n and λ in an abstract model

◮ The existence of computable Sm
n functions is the “detail” that

we promised to supply when discussing the definition of
“model of computation”.

◮ A model of computation, by definition, has a set X and partial
App functions for any number of variables, and the App
functions for different numbers of arguments are connected by
(1). The Sm

n functions must be computable, i.e. have indices.

◮ We also need to form indices of functions like λx, yF (y, x), or
λy f(x, y, z), which cannot be directly defined using the Sm

n .

◮ It suffices to have the Sm
n plus “swap” functions si,j,n that

swap the i-th and j-th arguments of n arguments. Thus for
example s1,2,3(e) is an index of λy, xϕe(x, y, z).



The Turing model of computation has Sm
n functions

Proof. We describe a Turing machine that computes Sm
n . The

input is a Turing machine e and a sequence y. The output should
be a Turing machine that takes input x and simulates the
computation by e at input x y. We describe the desired output
machine as a two-tape machine.

◮ Starting with e y on the main tape, and input x on the
auxiliary tape, we insert x between e and y, leaving a blank
before and after x.

◮ Then we return to the first square of x and run machine e.
(We do not need to appeal to the universal machine.)

◮ What we need to output, however, is a one-tape machine that
simulates this two-tape machine. But in the exercises, you
have already shown how to transform a two-tape machine
algorithmically into an equivalent one-tape machine.

That completes the proof of the existence of Sm
n functions.



The Turing model of computation has swap functions

◮ For notational simplicity, we give the proof of the existence of
swap functions only for s1,2,2, which swaps the order of
arguments of a binary function.

◮ To compute s1,2,2(e), we first rename the start state of e.

◮ Our output will consist of a list of Turing machine instructions
including those of e (with the renamed start state), plus
additional instructions designed to interchange the order of
the two inputs on the tape that e works on, for example by
copying the first input to the right of the second, and then
copying both inputs back to the original starting square.

◮ That completes the proof (or at least, that’s as much as we
are going to say about it).



The First Recursion Theorem
The first recursion theorem says that any recursion equation can
be solved, in which the values of the function to be recursively
defined are used in any way whatsoever.

Theorem (First recursion theorem)

Let H be Turing computable. Then there exists a

Turing-computable g such that

g(x) ∼= H(x, g(x))

◮ Of course, the resulting function will generally be only partial;
if it is total that will require an additional proof.

◮ For example, we can define g(x) = g(x + 1), which has one
solution that is nowhere defined.

◮ This example also points up the fact that recursion equations
generally do not have unique solutions, since any constant
function also satisfies the equation.



The Second Recursion Theorem

We will prove the first recursion theorem as a corollary of an even
more general theorem, which says that recursion equations are
solvable even when F is allowed access to the code for the
recursively defined function, not just to its values:

Theorem (Second recursion theorem)

Let F be Turing computable. Then there exists a Turing machine

e computing a partial function g such that

g(x) ∼= F (x, e)

For comparison, we repeat the equation from the First Recursion
Theorem:

g(x) ∼= H(x, g(x))



The fixed-point theorem

The second recursion theorem in turn is a consequence of a
theorem first stated and proved by Rogers in his 1967 book,
Recursion Theory:

Theorem (Fixed-point theorem)

Let G be Turing computable and total. Then there exists an e
such that for all x, ϕe = ϕG(e).



The general setting for recursion theorems

Theorem
The three recursion theorems hold in any model of computation,

i.e. set X with partial App functions and computable Sm
n and

swap functions.

◮ Since the Turing-computable functions have Sm
n and swap

functions, the result applies to that case.

◮ In the next slides, we will prove all four theorems in the
abstract setting.



Proof of the first recursion theorem from the second

We can write the equation

g(x) ∼= H(x, g(x))

as
g(x) ∼= H(x, App(e,x))

and apply the second recursion theorem with

F (x, e) = H(x, App(e,x)).

Then
g(x) = F (x, e) = H(x, App(e,x)).



Proof of the second recursion theorem from the fixed-point

theorem

◮ In the abstract setting, the fixed point theorem says that if G
is total computable, then there exists an e such that for all x,
App(e, x) ∼= App(G(e), x).

◮ Suppose given the partial computable function F . Define
G(e) = ΛxF (x, e).

◮ Note that G is a total function, since ΛxF (x, e) is always
some Turing machine obtained from F , whether F is total or
not.

◮ By the fixed-point theorem, there exists an e such that
for all x, App(e, x) ∼= App(G(e), x).

◮ Define g(x) := App(e,x). Then we have

g(x) := App(e,x) ∼= App(G(e),x) ∼= App(ΛxF (x, e), x) ∼= F (x, e)

as required for the second recursion theorem.



Notation

The calculations involved in the next proof are easier to follow if
we stop writing App explicitly, and just write xy instead of
App(x, y). Thus

◮ we write xy for App(x, y).

◮ App(App(x, x), y) becomes (xx)y.

◮ That is not the same as x(xy).

◮ We will try to avoid omitting parentheses but if we do omit
them, xyz means (xy)z.



The fixed-point theorem
Given a total computable G, define

ω := ΛxG(Λy ((xx)y)).

Then define
e := Λy ((ωω)y)

A calculation then reveals that e is the desired fixed point:

ex ∼= (Λy ((ωω)y))x by definition of e
∼= (ωω)x reducing the Λ term
∼= ((ΛxG(Λy ((xx)y)))ω)x by definition of ω
∼= G(Λy ((ωω)y)))x
∼= (G(e))x

In the unabbreviated notation, this is App(e, x) ∼= App(G(e), x),
which is the abstract version of the fixed-point theorem. That
completes the proof.



This wonderful, mysterious proof!

◮ The reader may be forgiven if he or she finds the proof
mysterious, and has the feeling that although it is easy to
check the proof line by line, it is still hard to understand.

◮ The origins of this proof will become clearer when we discuss
the λ-calculus, but that will not entirely remove the mystery.

◮ Though the proof is mysterious, the theorem is basic and
important. So memorize the proof.

◮ Write it out several times on a blank sheet of paper, copying
at first, and eventually writing it out from memory.

◮ This is one of the secret, esoteric gems of knowledge passed
on in the inner circles of mathematical logic.



Applications of the recursion theorem

Corollary

The µ-recursive functions form a model of computation. That is, if

ϕn is the partial µ-function with index n and App(n, x) := ϕn(x),
then App is µ-recursive.

Proof. App is defined by recursion on n; that is, the value ϕn(x) is
defined in terms of some other values of ϕm for m < n. These
recursion equations are quite complicated, but their exact form is
no longer relevant. Supposing that e is a Turing machine that
computes g(n, x) = ϕn(x), for some F the recursion equations can
be written as g(n, x) = F (n, x, e). Therefore by the second
recursion theorem, such an e actually exists. That completes the
proof.

Remark. The proof has a certain magical quality: we get to assume

that the desired Turing machine e exists; then we only have to
check that the recursion equations we want to solve can be written
in terms of e, and magically the Turing machine e appears.



No smaller model of computation on N

The following theorem shows that there is no weaker notion of
computation than Turing machines, that permits a universal
machine.

Theorem (Minimality theorem)

Any model of computation on the natural numbers N must include

all the Turing-computable functions; furthermore the computable

functions in any model of computation on N are closed under the

least-number operator.



Proof of the minimality theorem

Suppose given a model of computation on N; let App be the
application function(s) of the model, and temporarily let
“computable” mean, computable in the model.

◮ It is easy to show, using the recursion theorem, that all
primitive recursive functions must computable.

◮ If we show that the computable partial functions are closed
under the µ operator, it will follow that all µ-recursive
functions are computable (in the model), and hence all Turing
computable functions also. Thus the only remaining thing to
do is to show closure under the µ operator.

◮ This is essentially a piece of beginning computer science:
search can be done recursively.

◮ Details on the next slide.



Search from recursion

Suppose χ(b, y) is (partial) computable. Then define

φ(b, z) ∼=

{

0 if χ(b, z) = 0

φ(b, z′)′ if χ(b, z) 6= 0)

Then we claim
µy (χ(b, y) = 0) ∼= φ(b, 0)

To prove this we prove the more general fact that φ(b, z) is the
least k such that y = z + k satisfies χ(b, y) = 0, if there is a y ≥ z
such that χ(b, y) = 0. That is proved by induction on y − z, where
y is the least y > z such that χ(b, y) = 0. (We expect to use
induction someplace, because this is a theorem about N.) The
base case of the induction is the first line in the definition of φ,
and the induction step follows from the second line, since when z
increase to z′, y − z (which is not zero, or the first line would have
applied) decreases by 1. That completes the proof.



No total App over N

The question naturally arises: Could we have a model of
computation in which App is a total function? In that case all
functions would be total. It is clear that no such model of
computation exists over N, since we know that µxx = x′ is
undefined, and by the minimality theorem, the µ operator can be
defined in any model of computation over N.


